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Abstract—Collective behavior in human society is attracting a
lot of attention, particularly due to novel emergent phenomena
associated with online social media and networks. In effect,
although crowd wisdom and herding behaviour have been well-
studied in social science, the rapid development of Internet
computing and e-commerce brings further needs of in-depth
comprehension of their consequences and impact from a tech-
nological perspective. Based on social learning, an analytical
knowledge originated in social science, we re-examine the well-
known phenomenon of information cascade where rational agents
can ignore personal knowledge in order to follow a predominant
social behaviour triggered by earlier decisions made by peers.
Moreover, we look into the cascade behavior from a commu-
nication theoretic perspective, interpreting social learning as a
distributed data processing scheme. This perspective enables the
development of a novel framework, which allows a characteriza-
tion of the conditions that trigger information cascades and trace
their impact on the accuracy of the collective inference. Finally,
potential applications and examples of information cascade have
been presented under various cyber technological scenarios, illus-
trating the prolific interplay between communication technology
and computational social science.

I. INTRODUCTION

The surprising outcomes of recent political polls, such as
the Brexit referendum and the latest US presidential election,
is revealing the limitation of our current understanding of
social behaviour in a highly-interconnected world. It has been
claimed that, similar to the way in which evolution takes
place among living species, human society evolves in time
from simple to more complex forms of organization and
behavior [1]. One of the distinctive and more challenging
characteristics of complex systems, which has been widely
acknowledged in social scenarios, is that the aggregation of
the activities of simple components or agents can generate
complex and unpredictable outcomes [2]–[4]. Therefore, just
as thermodynamics and statistical mechanics went beyond
classical mechanics in order to provide an adequate framework
for the description of gasses and liquids, a new theory might
be necessary in order to enable a deeper understanding of
important phenomena that characterize modern society [1].

New information dynamics are defying our traditional tools
of analysis, which were forged in times when the world was
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simpler and easier to predict [5], [6]. In the early days of
Internet, the promises of abundance of information and the
anti-authoritarian structure were thought to be seeds that would
bring great benefits to society [7]. However, it has been shown
that the heterogeneity and absence of recognized information
sources can generate doubts about causation, which in turn
can stimulate speculations and misinformation [8]. Moreover,
the excess of available information and the limited processing
capabilities of individuals trigger confirmation biases, which
stimulate the exclusive use of information sources that support
one’s existing beliefs or points of view [9]. Furthermore,
online recommendation algorithms constantly and invisibly
filter user’s queries, presenting contents that might better
satisfy the user’s profile and preferences. All these elements
are creating so-called digital echo chambers, where disjoint
groups of society are progressively reinforced in their beliefs
—whatever they might be [10]. The digital misinformation that
these mechanisms are generating is so severe that the World
Economic Forum (WEF) listed this as one of the main threats
to our modern society [11].

In order to address these issues, one big challenge is to
clarify the effects and consequences of the large amount of
information that is constantly generated and exchange between
individuals in a digital society [12]. As a matter of fact, the
massive deployment and use of Internet mobile terminals and
devices is enabling massive information networks, making the
global mobile data traffic of 2015 to grow more than 74%
reaching 3.7 exabytes per month, being driven by 2.7 billion
connected devices [13]. Moreover, social habits are evolving
concurrently with the pervasive use of Internet, making social
networks an essential tool for social interaction and informa-
tion exchange [14]–[16]. For example, most people nowadays
use the Internet to check other people’s recommendations
prior to making decisions for traveling, buying a product or
choosing a restaurant. In these cases, subsequent decisions
are influence by earlier agents, which allows possible mis-
information and cascades across the network. Such complex
interactions may defy intuition and are difficult to predict, and
therefore an in-depth understanding of the inner mechanisms
is very much desirable.

In particular, one crucial technological goal is to understand
the way in which decision making is affected by the mecha-
nisms of large distributed data processing [17]. In addition to
social science and Internet computing, this knowledge is fur-
ther crucial to system automation and cyber-physical systems,
machine learning and artificial intelligence [18]. It is noted
that most engineering approaches focuses on a combination of
distributed information gathering and centralized computing.
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However, large-scale deployment of intelligent systems/agents
allows distributed processing by agents who sequentially col-
lect and exchange data and perform local inferences, which
allows the attainment of more graceful scaling properties with
respect to the network size [19]–[21].

Decision making based on distributedly sensed information
was intensively studied during the 1980s and early 1990s in
the context of distributed radar systems, where the goal was
to design schemes that detect events as accurately as possible
considering various communication restrictions (c.f. [22]–[24]
and references therein). Unfortunately, it has been shown that
the design of optimal schemes for information transfer and
distributed processing for the general case is NP-hard [25]. In
fact, although in many cases these schemes can be described
as a set of thresholds against which likelihood functions must
be compared, the determination of the optimal thresholds is
in general an intractable problem [22]. For example, it has
been shown that using equal thresholds can be suboptimal
even for the simple case of a network of identically distributed
sensors arranged in a star topology [26], being only asymp-
totically optimal for large networks [22], [27]. Moreover,
symmetric strategies are not useful for more complex network
topologies (e.g. [28], [29]), and hence heuristic methods for
finding the thresholds are necessary. Renewed interest on this
problem took place after the emergence of wireless sensor
networks, by considering the effect of noise, outage events
and the impact of energy and bandwidth constraints (c.f.
[30], [31] and references therein). Other aspects have also
been analysed, including robust distributed estimation [32],
[33], multi-objective optimization [34], distributed parameter
optimization, tracking and many others [35]–[37]. However,
most of these works focus on networks of star topology and
are based on very distinctive roles for regular nodes and fusion
centers, which makes them not well-suited for large-scale
distributed networks with ad hoc topologies.

In parallel, remarkable efforts have been made in economics
and social science to analyze sequential information process-
ing and learning on social networks (an extensive literature
review about social learning is provided in Section III). In
these models, agents make decisions combining private knowl-
edge with social information that they gather from looking
at theirs peers’ actions. Interestingly, it has been shown that
the aggregation of rational decisions can generate irrational
global behaviour, degrading the “wisdom of the crowds” into
mere herd behaviour. This phenomenon, called information
cascades, arises when the social information overloads agents,
forcing them to ignore their private knowledge and to adopt the
predominant social behaviour (an introduction and literature
review on information cascades is provided in Section II). It is
believed that information cascades play crucial roles in the for-
mation of political opinions, the adoption or rejection of new
technology and many other important social phenomena [38].
There have existed further interest in understanding the role
of information cascades in the context of e-commerce and
the digital society [39]. For example, information cascades
can have tremendous consequences in online stores where
customers can review the opinion of previous customers before
deciding to buy a product, or in the emergence of viral media

contents based on sequential actions of like or dislike [40].
Therefore, developing further in-depth analytical understand-
ing on the mechanisms that trigger information cascades and
their effect on social learning emerges as a fundamental issue
in modern human society.

The main motivation behind this article is to explore social
learning as a distributed signal processing method, building
a bridge between the research done separately by economists
and sociologist, and electrical engineers and computer scien-
tists. We intend to provide a quantitative framework to analyse
the impact of information cascades over the performance of
social learning, while the current literature primarily pays
attention to the conditions that guarantee the achievement
of a perfect inference asymptotically (i.e. the inference error
rate goes to zero). Furthermore, following an engineering
perspective, social learning can be quite useful as a distributed
data processing scheme for a range of applications if the error
rate does not goes to zero but can be bounded below some
critical value. Therefore, we develop novel upper bounds for
the asymptotic inference performance, which can be used as
a design guide for applying social learning in engineering
applications. Moreover, these bounds provide fundamental
insights that delineate the way in which information cascades
influences the asymptotic error rate of social learning. Finally,
our framework also provides analytical formulas for the exact
performance of each agent, allowing an efficient exploration
of the error rates in non-asymptotic regimes.

The rest of this article is structured as follows. Sections II
and III present an introduction to information cascades and
social learning, presenting the fundamental ideas and dis-
cussing some of the relevant literature. After this, Section IV
presents our novel perspective of social learning as a data
aggregation scheme. Our main results about the character-
ization of information cascades, related to this novel per-
spective, are presented in Section V, and are then illustrated
for the case of social networks driven by binary signals in
Section VI. Section VII uses the results of Section V to
derive novel bounds for the achievable performance of social
learning, providing a deeper understanding of the impact
of information cascades over collective signal processing.
These results are then illustrated by numerical evaluations in
Section VIII. Sections IX and X discuss several important
applications that information cascades have in prominent cyber
technological scenarios, including cyber physical security and
machine learning. Finally, Section XI summarizes our main
conclusions.

II. AN INTRODUCTION TO INFORMATION CASCADES

This section present a general introduction to information
cascades, reviewing the state of the art and providing the
necessary background for the unfamiliar reader. In the sequel,
first Section II-A discusses some fundamental aspects and
provide historical remarks. Then, Section II-B presents some
social implications, and provides a preliminary definition of
what an information cascade is (which is latter revisited in
Section V-A). Finally, statistical approaches to study informa-
tion cascades are discussed in Section II-C.
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A. Fundamentals of group decisions and social influence

Intuitively, the decision made by a group of agents can
be much more accurate than the one made by an isolated
individual. This phenomenon, known as wisdom of the crowds,
has been acknowledged and experimentally verified in diverse
contexts by researchers of economics, psychology and soci-
ology [41]–[43]. The origin of this idea is commonly traced
back to a work written in 1907 by Sir Francis Galton, who
was cousin of Charles Darwin [44]. By examining the results
of a “guess the weight of the ox” competition in a country
fair, Galton noted that the median of all the estimations was
particularly accurate, being closer to the real value than the
guesses made by experts. This is somewhat related to the law
of large numbers, where the process of averaging can keep the
consistent part of a signal while reducing non-coherent noisy
elements. It has to be noted that the trust on the accuracy of
aggregated opinions is not a mere theoretical tool, being deeply
rooted into the popular mind and influencing stock markets,
political elections, and quiz shows [45].

Interestingly, it is also commonly acknowledged that in
real life the wisdom of the crowd is far from infallible.
In effect, it has been noted that the effectiveness of this
phenomenon requires two main principles: decentralization
(allowing diversity of opinion and independence of noise and
errors) and aggregation [46]. The failure of any of these
principles can severely degrade the accuracy of the wisdom
of the crowds.

Already renowned philosophers, like Soren Kierkegaard
and Friedrich Nietzsche, noted that aggregated behaviour can
degrade into mere herd dynamics, where people follow the
prominent social behaviour without judging it with critical
thinking [47]. More recently, a number of studies have shown
how social influence can affect individual decisions, compro-
mising the results of estimation tasks, price determination
and even music preferences [43], [48]–[50]. Social interac-
tion undermines the independency of individual opinions, as
individuals are usually aware of each other’s decisions and
this might induce them to review their own estimates [51].
After being aware of peer’s choices, agents might want to
modify their opinions due to peer pressure towards conformity
or a suspect that others might have better information [52],
[53]. As a simple example, many people like buying popular
products and think that, if many people liked it, it cannot
be bad. In particular, [50] analyses the behaviour of agents
contrasting the results when they are aware or not of other’s
decisions. The corresponding experimental evidence shows
that the knowledge of other’s decisions effectively reduces the
diversity of opinions, which in turns degrades the effectiveness
of the wisdom of crowds. In this way, one can see how the
aggregation of rational decisions can generate irrational global
behaviour.

B. Preliminary definition and social implications

Social agents usually are faced with the dilemma of how to
act when the information gathered from their social network
contradict their private conclusion. An information cascade

takes place when an agent actually chooses to ignore pri-
vate information in order to follow the predominant social
behaviour or preference, in despite of possible contradictions
with his/her personal information [38]. The term “cascade”
comes from the fact that once one agent has cascaded, this
increases the social pressure for future agents to take a similar
decision. Therefore, these events can easily spread over large
portions of a social network.

Information cascades have been proposed as an explanation
of how the “wisdom of the crowds” can transform into herd
behaviour [54]. Moreover, it has been suggested that informa-
tion cascades play crucial roles in many politic, economic and
social phenomena [38]. For example, some companies provide
early sales or early tests opportunities to trigger cascades of
purchasing decisions [55], [56]. In markets with a monopolis-
tic seller and buyers that are aware of each other’s purchases,
it has been shown that the monopolist has incentives to alter
the good’s prices in order to induce herding [57]. With respect
to the extremely slow adoption of a clearly more convenient
hybrid seed corn during the Great Depression, researchers
suggest that is was due to the higher trust that farmers had
for their neighbours over the information provided by the
corresponding salesman [58]. Also, the dangers of information
cascades over political preferences has been acknowledged by
countries such as Israel and France, who have made laws to
prohibit polling during the days or weeks before elections in
order to avoid a cascading influence over the citizens [59].

A renewed interest about information cascades have
emerged recently with respect to the social dynamics that take
place in massive e-commerce and e-marketing platforms [39].
The steering or manipulation of information cascades phenom-
ena could have a big impact over these systems, which raises
concerns about their safety and resilience from malicious
attacks or dishonest users. Developing a clear understanding
of the triggering conditions and range of the effects of infor-
mation cascades is therefore of fundamental importance, as
this can enable the design of secure and trustable platforms
that are crucial for a prosperous digital society.

C. Statistical approaches

The mechanisms behind the wisdom of the crowds and in-
formation cascades are of statistical nature, and hence they are
not restricted to social or psychological phenomena. According
to this rationale, statistical Social Learning may supply a
theoretical tool to develop a deep understanding of information
cascades. While Social Learning is discussed in Section III,
other methodologies are introduced in the sequel.

1) Information diffusion: Empirical studies of the struc-
tural characteristics of information cascades can be done
by analysing user-generated contents collected from records
of online social networks. For analysing this data, some
approaches (e.g. Social Learning, c.f. Section III) adopt a
microscopic viewpoint where cascades are considered to be the
consequence of the decision patters of specific users. In con-
trast, a large volume of literature in computer science avoids
these complexities by adopting a macroscopic perspective,
where cascading contents are analysed as a case of information
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diffusion over a network. In particular, most of the works
focus on studying the behavior of statistical properties such
as cascade length, tree size and link distribution [60]–[66].
Moreover, this approach enables the use of techniques from
algebraic graph theory to characterize the diffusion process,
including spectral analysis of the Laplacian or network adja-
cency matrices [67].

2) Dynamical systems analysis: An alternative framework
to study information cascades have been presented in [68],
which is based on a novel connection found between se-
quential decision processes and dynamical systems. In this
work the authors consider a group of agents that have to
sequentially make a binary decision. The decision of the n-
th agent, X

n

, is generated by considering the information
carried by a private signal S

n

and the previous decisions
X1, . . . , Xn�1. Moreover, in order to consider irrational and
stochastic aspects of human decisions, it is assumed that X

n

is
stochastically generated following a Bernoulli random variable
with parameter p

n

= u
n

(R
n

, S
n

), where u
n

(·, ·) is an utility
function and R

n

is the output of a pre-decision filter given by

R
n

=

1

n� 1

n�1
X

j=1

S
n,j

(X
j

) (1)

where S
n,j

is a collection of stochastic functions that map
{0, 1} to R. The pre-decision filter model is motivated by
the tendency of people to have selective attention and hence
project high-dimensional signals into low-dimensional repre-
sentations. Hence, R

n

represents a lossy compressed version
of the decisions of previous agents.

Interestingly, it has been shown that the evolution of the
time series R

n

can be traced down using tools from dynamical
system theory. A very intuitive understanding of the evolution
of this system can attained by considering the plot of a specific
utility function, over which the evolution of R

n

corresponds to
a standard dynamical system. Following this rationale, stable
and unstable points in the evolution can be defined, which
correspond to the values towards which R

n

converges almost
surely (see Figure 1).

This simple model allows to develop a clear intuition
over the aggregated effect of the social information over the
evolution of p

n

. In effect, the graphical perspective provided
by the dynamical system representation enables an insight
on how, depending on the structure of the variables S

n,j

,
some situations are more likely to make R

n+1 to be larger
than R

n

, or vice-versa. The decomposition of the space of
possible values of R

n

based on attractors, attractive regions
and unstable points allows a whole new approach to the study
of information cascades, whose exploration has just started.

3) Empirical approaches: Since the idea of information
cascades was published in the economics literature [54], [69],
a number of empirical studies of information cascades have
been carried out. For example, [70]–[72] design experiments to
investigate the information cascades phenomenon in sequential
decision making by human test subjects. In [70], test subjects
were ask to make predictions about the predominant colour
of a collection of balls inside an urn, after looking to a
randomly chosen one. Following the prediction provided by

Fig. 1: Evolution of sequential decision making viewed as a dynam-
ical system. Studying the evolution of R

n

, as defined in (1), stable
and unstable points can be defined, which correspond to the limiting
values of this time series [68].

the information cascade theory, if some few initial decisions
coincide, then the subsequent decisions tend to follow the
established pattern ignoring the result of the actual withdraw.

A simple operational model for information cascades was
presented in [73], being based exclusively on variables that
can be observed from real data. The model was tested on data
related to the adoption of electronic commerce technologies,
showing that information cascades play a major role in such
processes.

The report presented in [74] studies the effect of information
cascades in data related to how people choose which movie
to see in the theater. The results suggest that the cascading
behaviour influence the box-office revenue and profits char-
acteristics, which are governed by Levy distributions with
infinite mean and infinite variance. This, in turn, might actually
explain the inherent difficulty of making accurate predictions
in those scenarios.

A recent research trend is to use both social learning
modeling and data analytics [75], [76] from online platforms
[77], [78]. Some topics considered by this literature include
complex user behavior analysis and prediction [65], [66], [79],
and control [80] or steering [39], [81], [82] of complex social
system phenomena. The interested reader can find a detailed
analysis of [39] in Section X-A.

III. HOW STATISTICAL LEARNING TAKES PLACE IN SOCIAL
NETWORKS

This section provide a general introduction to social learn-
ing. The pioneer works of Bayesian social learning are dis-
cussed in Section III-A, and then Section III-B reviews the
contributions of more recent works. Aspects of Non-bayesian
social learning are then discussed in Section III-C, and finally
Section III-D present some open question.

A. Early efforts
Social learning was initially investigated by [54], [69], [83],

[84] by analyzing sequential decision-making processes in
social networks. In these systems each agent has to make one
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Fig. 2: The Sequential Social Learning Model. The variables S
n

rep-
resent personal evidence, while the arrows between various decisions
X

j

illustrate how decisions influence each other in the social system.

decision following a pre-defined fixed ordering. The decision
of the agent that decides in the n-th place of the sequence,
denoted as X

n

2 X
n

, is based on two sources of information
(see Figure 2). In one hand, agents possess personal knowledge
about the corresponding subject, which is represented by
the random variable S

n

2 S
n

that is only available to the
corresponding agent. These private signals can be discrete or
continuous depending on the cardinality of the signal space
S
n

. Also, these signals are correlated with a variable that
represents the “state of the world”, denoted as W , which is
unknown to the agents. Secondly, the n-th agent is aware of
the decisions made by all the previous agents, denoted as
X

n�1
= (X1, . . . , Xn�1). This allows each agent to learn

from the examples of previous agents in order to improve
their decision accuracy.

An interesting question is how the agents combine these
two heterogeneous sources of information in order to optimize
their decisions. A crucial assumption adopted in these works
is that the agents act based on perfect rationality making
Bayesian decisions, which maximize the average value of a
cost function that quantifies their personal benefit. This cost
function is traditionally assumed to be affected by the agent’s
own decision X

n

and the state of the world as encoded by W .
An interesting result is that social learning allows individuals
with uninformative private signals to harvest information from
other’s private signals by copying their decisions. Therefore,
even if S

n

is not very informative, the n-th agent can still
gain indirect access to the information conveyed in S1, . . . , Sn

by considering X

n�1, which represent a lossy compressed
version of the other agents’ private signals. This is an em-
bodiment of the wisdom of the crowds (c.f. Section II-A),
as the evidence provided by early agents’ decisions can be
successfully aggregated for guaranteeing a surprisingly im-
proved accuracy for the decision made by later agents. This
phenomenon is particularly remarkable for the case of binary
decisions (i.e. X

n

2 {0, 1}) and complex private signals, as
from a distributed sensing perspective this can be seen as a
distributed data fusion scheme that requires small amounts of
information exchange.

However, these efforts suggest further room to enhance
social learning, as under certain conditions the aggregation of
rational decisions can generate irrational global behaviour and
information cascades (c.f. Section II-B). In effect, information
cascades arises in social learning when the social information
becomes so persuasive that all subsequent agents ignore their

personal knowledge and adopt an homogeneous behaviour, and
hence X

m

= X
nc for all m > nc. This is usually an undesired

phenomenon that stops the inclusion of new evidence in the
inference process, as further agents discard their own private
information to blindly follow the prevailing behavior.

In summary, the initial research succeeded in showing that
information cascades effectively can take place within social
systems, but could not provide a general understanding of their
nature and generating causes.

B. Effect of cost functions and network topology
Motivated by these initial findings, researchers aimed to

deepen the understanding of the mechanisms of social learning
by extending the original models by considering more general
cost metrics, assuming that the cost functions and priors
possessed by different agents could disagree [85]–[88]. Their
results show that the cost function plays a crucial role in
generating homogeneous asymptotic decisions, or in allow-
ing heterogeneous behaviours to coexist. The work reported
in [87] shows that diversity in the agent’s preferences can
undermine the trust that agents give to each other, decreasing
the interest in conformity and allowing different behaviours to
coexist asymptotically. In fact, [86] presents some examples
where the trust is undermined to such an extent that the
past history does not provides valuable information to future
agents, and hence they have to rely exclusively on their own
private signals.

In addition, [86] proved that the asymptotic accuracy of
social learning is not perfect if the information conveyed by the
private signals is bounded. Concretely, let us consider binary
decisions (i.e. X

n

2 {0, 1}) and a binary state of the world
variable W . Then, under very general conditions, it can be
shown that the maximization of the utility function is equiv-
alent to making X

n

as much similar as W as possible given
the available information (c.f. the corresponding discussion in
Section IV-C). Perfect asymptotic accuracy is hence equivalent
to guarantee that

lim

n!1
P {X

n

6= W} = 0 . (2)

Now, for each possible private signal realization S
n

= s 2
S
n

one can compute the likelihood ratio of s taking place
under the event {W = 1} versus {W = 0} (for a precise
definition of the private signal likelihood see Section IV-A).
It is well-known that in general these likelihood ratio values
are sufficient statistics for estimating W based on S

n

[89],
and hence due to the above discussion they contain all the
information relevant for generating X

n

. Following this, [86]
proved that (2) is not satisfied if the likelihood ratio values
of the private signals are bounded above and bellow by given
constants. Note that one of the consequences of this result is
that social learning cannot attain perfect asymptotic accuracy
when the private signals are drawn from finiten spaces.

Further important insights about social learning were
achieved by studying the effects of the social network topology
on the aggregated behaviour [39], [56], [90]–[92]. Hence,
although the original models of social learning assumed that
the n-th agent act based on the knowledge of all the previous
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decisions X

n�1, these works consider a more general case
where agents only have access to a limited subset of the
previous decisions. The neighbourhood of the n-th agent is
normally defined as the set of agents which are connected
to him/her by the social network, which are denoted as
B
n

. Correspondingly, in these scenarios the decision X
n

is
made considering the information of S

n

and XBn , where the
latter represents the vector of decisions of the neighbours of
the n-th agent. Interestingly, the above works consider both
deterministic and stochastic social network topologies, the
later being characterized by random neighbourhoods.

In [91] the authors provide various conditions over the
network topology and private signal structure that guarantee
or forbid perfect asymptotic social leaning. Their results show
that asymptotic learning does not take place if there is a
group of agents that are “too influential”, i.e. if there exist
a infinite number of individuals influenced exclusively by a
specific finite subset of agents. On the other hand, it is also
shown that perfect asymptotic learning takes place if there are
no too influential groups and the private signal likelihood is
unbounded.

As a partial converse result, a number of network topology
characteristics have been presented which, when combined
with bounded private signal likelihood, makes it impossible
to achieve perfect learning. This extends the result of [86] for
the more general case of a (possibly random) social network
topology. However, [91] also provides a fascinating example
of a network structure that allows perfect asymptotic learning
even in presence of bounded private signal likelihood. This
topology is characterized by two different kinds of agents:
innovators, which have few social connections and hence are
likely to follow the dictate of their own private signal, and
gatherers, whose highly connected network location allows
them to synthesize previous opinions. This inspiring heteroge-
neous network showed how an adequate topology can undo the
limitations of the private signal structure, allowing the system
to reach a perfect asymptotic inference.

C. Non-bayesian social learning

All the works discussed so far are focused on Bayesian
learning, where agents choose the actions following perfect
rationality. However, important research efforts have been
made in parallel in non-bayesian social learning models, where
agents use simple rule-of-thumb methods to combine their
private information and the one that comes from the social
signals [93]–[97].

A vast part of the literature that studies non-bayesian social
leaning is inspired on a model presented in [93], where agents
combine the neighbours’ opinions additively. In particular,
this work considers a group of agents who need to make
estimates of the value of a parameter ✓. The prior knowledge
of the n-th agent about the parameter is represented by a
probability distribution over the possible values, denoted as
f
n

(0). Hence, by considering non-negative constants q
i,j

that
represent the trust of agents on each other, the process of

exchanging opinions is modeled as

f
n

(t) =
N

X

j=1

q
n,j

f
j

(t� 1) , (3)

where t is an non-negative integer. This method of fusing
information is algebraically simpler than the one used by
Bayesian agents, allowing to perform detailed analyses based
on techniques based on Markov chain theory [98, Chapter 6].
In fact, the iterative process can be represented by

~f(t) = Q~f(t� 1) = Qn ~f(0) (4)

where ~f(t) = (f1(t), . . . , fn(t))
t and Q is the matrix with

entries q
n,j

. Therefore, it is shown that the asymptotic value
lim

t!1 ~f(t) is governed by the properties of Qn for large
values of n. Therefore, using standard tools like the Perron-
Frobenius Theorem [98], it is possible to predict when the
agents achieve asymptotic agreement. Interestingly, if consen-
sus is reached its value is an afine combination of the original
opinions.

In [95] and [97], it is shown that simple ad hoc updating
rules can still achieve asymptotic correct inference, even when
they are unaware of important aspects like the social network
topology or the signal structure of other agents. The system
model of [95] closely follows the model presented in [93],
although it explores the connection of Q with the social
network topology and other aspects. On the other hand, [97]
introduces a constant arrival of new information, which allows
the study novel phenomena like asymptotic learning in finite
networks. Both papers acknowledge that, although somehow
surprisingly simple rules can achieve asymptotic learning, the
simplicity of the rule might have a strong negative effect on the
learning rate and the corresponding speed of convergence.cy

The effect of the network topology on the asymptotic
performance of non-bayesian social learning was studied in
[96] using a similar model than the one proposed in [93], but
introducing random matrices Q in order to represent stochas-
tic social networks. This work also considers heterogeneous
agents, some of them being stubborn and hence less likely
to modify their initial opinions. Their analysis shows that the
evolution of the social learning is connected to the matrix ˜W ,
which can be expressed as

˜W = T +D . (5)

Above, the matrix T is governed by the probabilities of agent
interaction and hence is related to the social structure of
the group, while D represents the influence structure that
quantifies which agents are more or less willing to adapt
their decisions to follow their neighbours. Interestingly, it is
shown that under general conditions ˜Wn converges to a matrix
with equal columns, and that the row vector determines the
value of the social consensus. Moreover, they provide bounds
of possible deviations from asymptotic learning that can be
produced by an excessive influence of some agents. One of
these bounds is based on the spectral gap of T , which is a well-
known measure of the social network connectivity (related to
the second largest eigenvalue of the matrix [67]).
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There is an interesting ongoing debate about if Bayesian
or non-Bayesian frameworks are more suitable to describe
human endeavour. In a nutshell, although Bayesian models
are elegant and tractable, they assume that agents act always
rationally [99], and consequently make unrealistic assumptions
about their knowledge of posterior probabilities that are related
to non-trivial aggregated social interactions [97]. However,
Bayesian models provide an important benchmark, not neces-
sarily due to their accuracy but because their simplicity allows
to develop important insights about the nature of the dynamics
of aggregated decisions, providing important reference points
for discussing non-bayesian models as well [92]. On the other
hand, the use of ad hoc information fusion methods in the non-
bayesian social learning literature makes it difficult to attain
general results.

Although highly desirable, it is challenging to compare the
results from bayesian and non-bayesian social learning in a
meaningful and fair way. In fact, while agents in Bayesian
systems usually decide once and do not adapt their decision
further, most of the non-bayesian learning literature consider
agents that update their decision regularly, being closer to
information diffusion processes (c.f. Section II-C1). One way
of filling this gap is by exploring single decision non-bayesian
social learning. This has been done in some recent litera-
ture [68], [100], [101], which also addresses non-asymptotic
properties which were not well-explored before. For example,
[100] proposes a data fusion scheme which combines Bayesian
updating for processing private information and an ad-hoc
combination based on a Gibbs measure for synthesising the so-
cial information. They show this scheme achieves exponential
convergence, and moreover quantify the dependencies of the
learning rate over different learning rules and communication
constraints using large deviation theory. In [101] there is a
comparison of the performance that are attainable using differ-
ent kind of data aggregation rules, including additive averaging
and majority rules. However, it is difficult to compare their
performance results with previous works as their model focus
on a final decision that uses as input all the partial decisions
generated in the learning process. The main aspects of [68]
are discussed in Section II-C2.

D. Asymptotic learning and information cascades
The existent literature suggests a direct connection between

imperfect asymptotic learning and information cascades. In
most sequential decision processes, the progressive amending
of new evidence generates the eventual achievement of perfect
inference, at least asymptotically. This can be verified in
the case of classic hypothesis testing [102] and in vari-
ous distributed hypothesis testing schemes [36], where the
convergence to a perfect inference is attained exponentially
fast. However, one of the distinctive characteristics of social
learning —acknowledged since the early efforts— is that
under some conditions perfect learning cannot be achieved
and the asymptotic performance is still sub-optimal. Moreover,
the literature argues that imperfect learning is a distinctive
effect of information cascades, which limit the amount of new
evidence that is included in the learning process [103]. There-
fore, depending on the network topology and private signal

structure there are two exclusive possibilities: either the social
learning achieves perfect asymptotic learning in the absence
of information cascades, or there are information cascades that
limit the learning process and hence prevent perfect learning
to be achieved. Following this idea, in combination with the
insights about the effect of the network topology presented in
[91], [39] explores how selective adaptation of incentives and
the progressive rewiring of the network connections can help
to steer information cascades. In despite of this preliminary
effort, the literature presents little fundamental understanding
of the relationship between information cascades and the
achievable inference performance that can be attained by social
learning. A first attempt to clarify this relationship is presented
in Section VII.

IV. SOCIAL LEARNING AS A DATA AGGREGATION SCHEME

This section presents our interpretation of social learning
as a case of distributed signal processing. For this, first Sec-
tion IV-A discusses the system model and basic assumptions
and then Section IV-B focus in analyzing the decision rule used
by agents. Finally, Section IV-C develops a communication
theoretic interpretation of social learning, settling the bases of
the framework that is developed in the next sections.

A. Preliminaries and basic assumptions
Let us consider a group of N agents that are sequentially

engaged in a binary decision-making process. Each agent
makes one decision, being it labeled according to the place
it takes within the decisions’ sequence. The decision of the
n-th agent, denoted as X

n

2 {0, 1}, is based on two sources
of information (see Figure 3): a private signal S

n

2 S that
corresponds to a discrete or continuous random variable that
represents personal information that the n-th agent possesses,
and social information given by the random variable G

n

2 G
n

that corresponds to information that the agent obtains from its
own social network.

All participating agents have the same observation ca-
pabilities, and therefore the signals S

n

are assumed to be
identically distributed. Moreover, it is assumed that the signals
are affected by the environment, which is represented by the
random variable W . We focus in the case of W 2 {0, 1}, as
this simplifies the details of our presentation. For tractability
reasons we follow the existent literature in assuming that the
signals S

n

are conditionally independent given W , following
probability measures denoted by µ

w

when conditioned on
the event {W = w}. It is assumed that both µ0 and µ1

are absolutely continuous with respect to each other [104],
which means that no particular signal completely determines
the state of the world. As a consequence of this assumption, the
log-likelihood ratio of these two distributions is well-defined
and given by the logarithm of the corresponding Radon-
Nikodym derivative ⇤

S

(s) = log

dµ1

dµ0
(s)⇤. It is also assumed

that µ0 6= µ1, so that ⇤
S

(s) is not trivially equal to zero.

⇤When S
n

takes a finite number of values then dµ1
dµ0

(s) = P{Sn=s|W=1}
P{Sn=s|W=0} ,

while if S
n

is a continuous random variable with conditional p.d.f. p(S
n

|w)
then dµ1

dµ0
(s) = p(s|w=1)

p(s|w=0) .



2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2687422, IEEE Access

8

Fig. 3: A social learning problem, where an agent need to make a
decision (X

n

) based on personal information coming from a private
signal (S

n

) and social information (G
N

) coming from a social
network.

The available social information, G
n

, represents what the
n-th agent can observe in the social network about the deci-
sions made by other agents, which are denoted as X

n�1
=

(X1, . . . , Xn�1). In effect, it is assumed that in general those
decisions might not be directly observable by the agent, as
they are measured through a social network that can impose
observational restrictions. In general G

n

can be a random
variable, vector, matrix or other mathematical object. Useful
examples are when G

n

corresponds to:
– The k previous decisions: G

n

= (X
n�k+1, . . . , Xn�1).

– The average value of the all the previous decisions: G
n

=

P

n�1
k=1 Xk

/(n� 1).
– The decisions of agents connected by an Erdos-Renyi net-

work with parameter q 2 [0, 1], i.e. G
n

2 {0, 1, e}n�1,
where

Z
k

=

(

X
k

with probability q,

e with probaility 1� q.
(6)

Our approach is not to assume any concrete functional form
for G

n

, but to develop a general framework with which the
consequences of various properties of G

n

can be explored. As
a minimal requirement, we ask G

n

to satisfy the following
basic properties:

(i) Causality: it is assumed that G
n

is conditionally inde-
pendent given W of S

m

for all m � n.
(ii) Uniform social uncertainty: the uncertainty present in

the social media is independent of W . Therefore, G
n

and W are conditionally independent given X

n�1.
A strategy is a rule for generating a decision X

n

based on
S
n

= s and G

n

= g

n, i.e. a collection of deterministic or
random functions ⇡

n

such that X
n

= ⇡
n

(S
n

,Gn

) for n 2
{1, . . . , N}.

B. Decision rule
We consider rational agents that follow a Bayesian strat-

egy to minimize the average cost given by ¯U
n

{⇡
n

} =

E {u(⇡
n

(S
n

,G
n

),W )}, where E {·} is the expected value
operator and u(x,w) is a cost function that can be engineered
to match the relevance of the decision X

n

= x when W = w.
For example, if u(w, x) = 1 � �

w,x

with �
w,x

the Kronecker
delta, then ¯U

n

{⇡} = P {W 6= ⇡} is the error rate of ⇡ as a
predictor of W . Also, if u(w, x) = |w � x|2 then the ¯U

n

is
the mean square error.

To find a functional description of Bayesian strategies, let
us first consider the average cost of deciding X

n

= x given
S
n

= s and G

n

= g

n

, which can be expressed as

U
n

(x|s,g
n

) = E{u
n

(x,W )|S
n

= s,G
n

= g

n

}
=

X

w2{0,1}

u(x,w)P {W = w|S
n

= s
n

,G
n

= g

n

} .

Hence, the corresponding Bayesian strategy is given by
⇡b
n

(s, g
n

) = argmin
x2X U

n

(x|s, g
n

). Note that the average
cost after adopting the policy ⇡

n

can then be written as

¯U
n

{⇡
n

} = E {E {U
n

(⇡
n

(s, g)|s, g)|S
n

= s,G
n

= g

n

}} ,

clarifying that ¯U
n

{⇡b
n

}  ¯U
n

{⇡
n

} for any other strategy ⇡
n

.
The Bayesian strategy for the case of binary deci-

sions can be determined by comparing U
n

(0|s, gn�1
) and

U
n

(1|s, gn�1
), which are the relative costs associated with

X
n

= 0 and X
n

= 1, respectively. This leads to an equivalent
condition given by [89]:

P {W = 1|S
n

,G
n

}
P {W = 0|S

n

,G
n

}
Xn=0
7

Xn=1

u(0, 0)� u(0, 1)

u(1, 1)� u(1, 0)
. (7)

Moreover, due to the causality property of G

n

(c.f. Sec-
tion IV-A), S

n

and G

n

are conditionally independent
given W = w. Therefore, using the Bayes rule on
P {W = 1|S

n

,G
n

} and P {W = 0|S
n

,G
n

}, a direct calcu-
lation shows that (7) can be re-written as

⇤

S

(S
n

) + ⇤

Gn(Gn

)

Xn=0
7

Xn=1
⌫ + ⌘ , (8)

where ⌫ = log

[u(0,0)�u(0,1)]
[u(1,1)�u(1,0)] , ⌘ = log

P{W=0}
P{W=1} and ⇤

Gn(Gn

)

is the log-likelyhood ratio of G

n

. This condition supplies a
simple data fusion rule for combining the information provided
by S

n

and G

n

.

C. Communication theoretic interpretation
Without loss of generality, for non-constant cost functions

and adequate decision’s labeling one can make the event
{X

n

= W} less costly that {X
n

6= W}, or equivalently
u(1, 1)  u(1, 0) and u(0, 0)  u(0, 1). Therefore, the
Bayesian strategy is to choose X

n

as similar to W as possible,
according to the available state of knowledge provided by S

n

and G

n

. Hence, decisions X
n

can be considered to be noisy
estimations of W in a communication theoretic signal space.

To formalize the above intuition, one can represent the
decision process of each agent as data transmission over a
noisy channel (for a summary of correspondences please refer
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to Table I). As a matter of fact, our scenario is equivalent
to a single data source W that is measured over multiple
noisy channels, generating the signals S

k

for k = 1, . . . , n
that are processed in order to generate X

n

(c.f. Figure 4).
The decoder of the n-th node, hence, receives as input the
signal S

n

and uses G

n

as side information for optimizing
the decoding process. The social information G

n

corresponds
to a lossy compression of the information provided by the
signals S1, . . . , Sn�1 that is expressed in the vector of previous
decisions X

n�1, representing a bandwidth constrain for the
communication between the agents.

TABLE I: Table of Correspondances

Communication theory Social learning
Node Social agent

Data source “State of the world”
Noisy measurement Private information

Communication range Social neighbourhood
Local processing Agent’s decision

Bandwidth constraints Social information

To further explore this perspective, let us re-formulate (8)
as

⇤

S

(S
n

)

Xn=0
7

Xn=1
⌧
n

(G

n

) , (9)

where ⌧
n

(G

n

) = ⌫+ ⌘�⇤

Gn(Gn

) is the decision threshold.
Therefore, the agent’s decoder can be modeled as two inde-
pendent signal processing modules that feed a decision module
(see Figure 4). The first signal processing module receives as
input the signal S

n

—which can be a number, vector, matrix
or any other mathematical object— and outputs ⇤

S

(S
n

),
which is a real number that serves as sufficient statistic for
the decision process. In this sense, this signal processing
module plays a similar role to the one of matched filtering
in a digital communication system [105]. The second signal
processing module takes as input G

n

and outputs ⌧
n

(G
n

),
which corresponds to side information that is processed in
order to optimize the decision threshold.

Finally, a decision module classifies the decision signal
⇤

S

(S
n

) based on a Vonoroi tessellation, which divides R in
two semi-open intervals given by

K0
n

= (�1, ⌧
n

(G

n

)), K1
n

= [⌧
n

(G

n

),1) . (10)

Therefore, the output of the decision module is provided by

⇡n

b (Sn

,Xn�1
) =

(

1 if ⇤
S

(S
n

) 2 K1
n

,
0 if ⇤

S

(S
n

) 2 K0
n

.
(11)

Note that the decision module is equivalent to the last
stage of a demodulator module in digital communication
receivers [105], with the particular feature that the tessellation
is determined by the side information provided by ⇤

Gn(Gn

).
This feature and subsequent consequences are analyzed in the
next sections.

V. CASCADING BEHAVIOUR

This section presents our main contribution in the analysis
of information cascades. For this purpose, first Section V-A

Fig. 4: Diagram that shows how social learning can interpreted
as a case of distributed signal processing. The depicted decoder
implements the rule given by (9), which combines the information
provided by the private signal of the n-th agent (S

n

) and the
evidence that comes form the social network (G

n

). The latter can
be considered as additional side-information that helps to increase
the accuracy of the inference.

presents a novel statistical definition of information cascades
that distinguishes between local and global cascades, being
valid for Bayesian and non-Bayesian social learning. Then,
Section V-B characterizes the conditions that trigger local in-
formation cascades. Global information cascades are then ana-
lyzed for the case of perfect social information in Section V-D.
The results are extended for non-idea social information in
Section V-C. Finally, Section V-E presents a communication-
theoretic interpretation of the main results of previous sections.

In the following, X
n

= ⇡
n

(S
n

, G
n

) corresponds
to Bayesian strategies unless otherwise stated. Also,
P
w

{X|Y } = P {X|Y,W = w} is used as a short-hand
notation.

A. Definitions
Following [54], we understand as information cascade the

phenomenon where the behaviour of a small part of the social
network can trigger a herd behaviour, forcing agents to ignore
their personal knowledge and act according to the social
pressure. In general the decision X

n

= ⇡
n

(S
n

,G
n

) depends
directly on S

n

and G

n

; however, a local cascade takes place
when the interdependency between X

n

and S
n

is broken due
to a dominant influence of G

n

. This intuition is formalized in
the next definition.

Definition 1. The social information g

n

2 G
n

pushes the n-th
agent into a local information cascade if X

n

= ⇡
n

(S
n

, g
n

) is
statistically independent of S

n

.

Note that, for the particular case of Bayesian strategies then
⇡b

n

: S ⇥ G
n

! {0, 1} is a deterministic function, and hence
the above definition states that g

n

causes a local cascade if
and only if ⇡(s, g

n

) is constant for all s 2 S . Therefore, the
above definition generalises the one provided in [39], being
also valid for non-Bayesian strategies.

As a next step, global information cascades are defined.
Intuitively, after a particular agent experiences G

n

= g

n

then
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a global cascade takes place if all subsequent agents also fall
in local information cascades almost surely.

Definition 2. A social network experiences a global informa-
tion cascade if there exist a g

n

2 G
n

such that the variables
S
k

and X
k

are statistically independent for all k � n when
conditioned to the event {G

n

= g

n

}.

An interesting question is when a local information cascade
triggers a global one. The following sub-sections explore this
issue for the case of Bayesian statistics.

B. Decision statistics and local information cascades

As a next step, we aim to analyse the behavior of local
information cascades as specified by Definition 1. For study-
ing the statistics of X

n

when rational agents use Bayesian
statistics, first note that all ⇤

S

(S
n

) are identically distributed.
Therefore, for a given G

n

= g

n

and W = w, X
n

is Bernoulli
distributed with parameter given by

P
w

{X
n

= 0 |G
n

= g

n

}
=

Z

S
P
w

{X
n

= 0|G
n

= g

n

, S
n

= s} dµ
w

(s)

=

Z

S

�

⇡b
n

(s, g
n

) = 0

 

dµ
w

(s)

= P
w

{⇤
S

(S
n

) < ⌧
n

(g

n

)}
= F⇤

w

�

⌧
n

(g

n

)

�

,

where F⇤
w

(·) is the c.d.f. of the variable ⇤

S

(S
n

) conditioned
to W = w, whose properties are discussed in Appendix A.
Note that the first equality is a consequence of the conditional
independency between S

n

and G

n

given W = w, the second
is due to (11) and the third to (9). The above results allows
to prove an useful lemma.

Lemma 1. X
n

� ⌧
n

�G

n

form a Markov Chain (i.e. ⌧
n

(G

n

)

is a sufficient statistic for generating X
n

).

Proof: From (V-B) one can see that P
w

{X
n

|⌧
n

,G
n

} do
not depend on G

n

, and therefore the conditional independency
of X

n

and G

n

given ⌧
n

is clear.
Let us introduce the notation U

s

= ess sup

s2S ⇤

S

(S
n

= s)
and L

s

= ess inf

s2S ⇤

S

(S
n

= s) for the essential supermum
and infimum of ⇤

S

(S
n

)

† . If any of these quantities diverge,
then there exist signals that provide overwhelming evidence in
favour of one of the hypothesis. If both are finite, the agents
are said to have bounded beliefs. Using these definitions, we
proceed to characterize local information cascades.

Proposition 1. The social information g

n

2 G
n

triggers a
local information cascade if and only if ⌧

n

(g

n

) /2 [L
s

, U
s

].

Proof: From (V-B) it can be seen that if ⌧
n

< L
s

then is F⇤
0 (⌧

n

) = F⇤
1 (⌧

n

) = 0, while if ⌧
n

> U
s

then
F⇤
0 (⌧

n

) = F⇤
1 (⌧

n

) = 1. Therefore, if ⌧
n

(g

n

) /2 [L
s

, U
s

]

then it determines X
n

almost surely, making X
n

and S
n

independent.

†The essential supremum is the smallest upper bound that holds almost
surely, being the natural measure-theoretic extension of the supremum [106].

On the other hand, if L
s

< ⌧
n

(g

n

) < U
s

then (V-B)
and the definition of U

s

and L
s

allows to conclude that
0 < P

w

�

X
n

= 0|Xn�1 < 1 for any w 2 {0, 1}. This
implies that the sets S0

(⌧) = {s 2 S|⇤
S

(s) < ⌧} and
S1

(⌧) = S � S0 have positive probability under both µ0 and
µ1, which in turn implies the existence of interdependency
between X

n

and S
n

in this case.
In this way, we found a simple characterization of the

conditions that trigger local information cascades. Intuitively,
Proposition 1 states that if the social information provides
more evidence than any possible signal, then a local cascade
is triggered almost surely. Some consequences of this result
are explored in the next section.

C. Global cascades under perfect social information
In this section we explore the conditions that trigger global

information cascades (c.f. Definition 2 given in Section V-A)
in the special case where G

n

= X

n�1, i.e. when each agent
has perfect access to all the previous decisions. As a first
observation, note that a direct calculation shows that

⌧
n+1(X

n

)� ⌧
n

(X

n�1
) =⇤

X

n�1
(X

n�1
)� ⇤

X

n
(X

n

)

=� ⇤

Xn|Xn�1
(X

n

|Xn�1
) , (12)

where the conditional log-likelihood is given by

⇤

Xn|Xn�1
(X

n

|Xn�1
) = log

P1

�

X
n

|Xn�1 

P0

�

X
n

|Xn�1 .

This shows that ⌧
n+1 decreases if X

n

provides additional
evidence about W = 1 over W = 0 with respect to the
previous decisions, and increased if the opposite happens. A
direct calculation using (V-B) shows that

⇤

Xn|Xn�1
(x

n

|xn�1
) = �(x

n

, ⌧
n

�

x

n�1
)

�

. (13)

where the function �(·, ·) is defined as

�(x, ⌧) = x log
F⇤
1 (⌧)

F⇤
0 (⌧)

+ (1� x) log
1� F⇤

1 (⌧)

1� F⇤
0 (⌧)

. (14)

This shows that ⌧
n

(X

n�1
) is a sufficient statistic of X

n�1

for predicting ⌧
n+1 � ⌧

n

. Finally, using these results one can
find that

⌧
n

(X

n�1
) = ⌘ + ⌫ �

n�1
X

k=1

�
�

X
k

, ⌧
k

(X

k�1
)

�

(15)

for n � 2, while for n = 1 then ⌧1 = ⌫ + ⌘.
From (15) it is tempting to interpret ⌧

n

as a random walk
over the decision space(for an introduction about Random
walks, see [107]). Although this is true for some particular
cases , this does not hold always as the steps ⌧

n+1 � ⌧
n

=

�⇤
Xn|Xn�1 are in general not identically distributed. How-

ever, although the process of decisions X1, X2, . . . in general
have quite complex non-Markovian statistics, the process
⌧1, ⌧2, . . . posses some useful properties that are explored in
the next Lemma.

Proposition 2. The process ⌧1, ⌧2, . . . is Markovian and
Super- or sub- Martingale for W = 0 and W = 1, respec-
tively.
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Proof: See Appendix B.
The main result of this sub-section is to state that the process

⌧
n

get trapped in some specific areas of R, and that these
events correspond to global information cascades. Theorem 1
states that as soon as ⌧

n

goes beyond [L
s

, U
s

] then it gets
stucked, this condition being necessary and sufficient for an
information cascade to be triggered. As that region of the
decision signal space characterizes local information cascades
(c.f. Proposition 1), is clear that this implies that in this
scenario every local information cascade triggers a global one.

Theorem 1. Let us assume that the private signals provide
bounded beliefs, i.e. both U

s

and L
s

are finite (c.f. Sec-
tion V-B). Then, for a given x

n�1 2 {0, 1}n�1, the three
following conditions are equivalent:
(i) X

n�1
= x

n�1 triggers a local information cascade in
agent n.

(ii) ⇤

Xn|Xn�1
(X

n

|xn�1
) = 0 almost surely.

(iii) X

n�1
= x

n�1 causes a global information cascade.

Proof: See Appendix B.
Basically, the above theorem states that if the private signals

have bounded beliefs then each local information cascade
triggers a global one. Therefore, the simple graphical char-
acterization provided by Proposition 1 for local cascades can
be used to analyse global cascades as well (c.f. the analysis
provided in Section V-E).

D. Global cascades under non-ideal social information
This section extends the results for global information

cascades obtained in the previous section to more general
scenarios. For this, let us first define the distortion coefficients
given by

↵
n

(g

n

|xn�1
) = P

�

G

n

= g

n

|Xn�1
= x

n�1
 

. (16)

Note that ↵
n

(g

n

|xn�1
) corresponds to the likelihood for

the n-th agent to experience G

n

= g

n

when the previous
decisions are X

n�1
= x

n�1. In the following, we use the
notation ⌧ full

n

(X

n�1
) = ⌘+⌫�⇤

X

n�1
(X

n�1
) to refer to the

decision threshold of the case of perfect social information,
studied in Section IV, distinguishing it with respect to the
actual decision threshold ⌧

n

(G

n

) related to a state of limited
knowledge as introduced in Section IV-C. We also introduce
the following further property, which is crucial for the rest of
the section.

Definition 3. The social information G

n

is said to has consis-
tent distortion if, for all g

n

2 G
n

, one of the following possi-
bilities hold: either all the decision vectors xn�1 2 {0, 1}n�1

such that ↵
n

(g

n

|xn�1
) > 0 satisfy ⌧ full

n

(x

n

) /2 [L
s

, U
s

],
or all decision vectors such that ↵

n

(g|xn�1
) > 0 satisfy

⌧ full
n

(x

n

) 2 [L
s

, U
s

].

Before presenting the main results of the section, we need
to state the following useful lemma.

Lemma 2. If a1, . . . , an and b1, . . . , bn are collections of non-
negative numbers, then

min

⇢

a1
b1

, . . . ,
a
n

b
n

�


P

n

j=1 aj
P

n

j=1 bj
 max

⇢

a1
b1

, . . . ,
a
n

b
n

�

.

Proof: See appendix B.
The following Theorem extends Theorem 1 for the case of

non-ideal social information, providing a sufficient condition
under which local information cascades always trigger a global
one. In summary, this proves that in these scenarios the
decision threshold ⌧

n

evolves until the first time it reaches
outside of the interval [L

s

, U
s

]. If ⌧
n

/2 [L
s

, U
s

] then ⌧
m

= ⌧
n

for all m > n, this being an unequivocal signal of the
beginning of an global information cascade.

Theorem 2. If G
n

possess global consistent distortion, then
any local information cascades trigger a global information
cascade.

Proof: See appendix B.
For providing further intuition and further leverage our

results from Section V-C, we explore the relationship between
the condition that trigger global information cascades under
perfect social information and the ones that trigger cascades
in the non-ideal case.

Proposition 3. If the process G

n

has consistent distortion,
then each g 2 G

n

for which exists at least one x

n 2 {0, 1}n�1

with ↵
n

(g|xn�1
) > 0 and ⌧ full

n

(x

n�1
) /2 [L

s

, U
s

] triggers an
global information cascade.

Proof: Let us focus in the case that ⌧ full
n

(x

n

) > U
s

, as
the proof for the case ⌧ full

n

(x

n

) < L
s

is analogous. Thanks to
Lemma 2 and Theorem 2, it is sufficient to prove that the above
condition guarantees that ⌧

n

(G

n

) > U
s

. A direct computation
shows that

⇤

Gn(g) = log

P1 {Gn

= g}
P0 {Gn

= g}

= log

P

x

n2{0,1}n ↵
n

(g|xn�1
)P1 {Xn

= x

n}
P

x

n2{0,1}n ↵
n

(g|xn�1
)P0 {Xn

= x

n}
(17)

Then, by applying the previous lemma to the argument of the
logarithm, one can show that

min

x

n2An

n

⇤

Xn(x
n

)

o

 ⇤

Gn(g)  max

x

n2An

n

⇤

Xn(x
n

)

o

,

where A
n

=

�

x

n 2 {0, 1}n��↵(g|xn

) > 0

 

. This condition is
equivalent to

min

x

n2An

n

⌧ full
n

(x

n

)

o

 ⌧
n

(G

n

)  max

x

n2An

n

⌧ full
n

(x

n

)

o

. (18)

From this last condition, combined with the global consistency,
guarantees that if one x

n is such that ↵
n

(g
n

|xn�1
) > 0 and

⌧ full
n

(x

n�1
) > U

s

, then ⌧
n

(G

n

) > U
s

as well.

E. Information cascades from a communication-theoretic per-
spective

While previous sections study the conditions that trigger
local and global information cascades, here we aim to re-
late the achieved results with the discussion presented in
Section IV-C. In this way, by following a communication-
theoretic perspective, it is possible to see the evolution of
⌧
n

as a refinement in the process of signal decoding and a
information cascade as a halt on this refinement. In effect,
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Fig. 5: The decision module compares the decision signal ⇤
S

(S
n

)
against a threshold ⌧

n

(G
n

), which evolves with the social informa-
tion.

the social information makes ⌧
n

to grow progressively, which
corresponds to a stronger side information that favours one
of the two hypothesis (see Figure 5). Correspondingly, an
information cascade is equivalent to side information that is
so persuasive that completely determines the output of the
decoder, disregarding the actual private signal realization.

It is important to notice that when ⌧
n

stops evolving due
to an information cascade, then the subsequent realizations
of private signals or social information do not influence the
decision process of future agents any longer, implying that
the learning process has actually stopped. The error rates of
all subsequent agents after an information cascade is triggered
are the same, as their decoding conditions are equivalent. This
explains why information cascades prevent the achievement of
a perfect inference even for asymptotically large networks.

It is interesting to note that the asymptotic performance
of social learning is directly related to the size of [L

s

, U
s

].
To illustrate this fact, let us first note that a value of
P
�

W = 1|S
n

,Xn�1 close to 0 or 1 of represent a high
certainty about the “state of the world”. A direct calculation
using Bayes rule shows that

P {W = 1|S
n

,G
n

} =�(⇤
Gn(Gn

)� ⌘ + ⇤

S

(S
n

))

=�(�⌧
n

+ ⌫ + ⇤

S

(S
n

)) , (19)

where �(x) = 1/(1 + e�x

) is the well-known sigmoid
function, and the second equality comes from the fact that
⌫ � ⌧

n

= ⌘ � ⇤

Gn(Gn

). Therefore, it is clear that a large
value of |⌧

n

| corresponds to a state of high certainty about
W . Moreover, according to Theorem 2 and Proposition 1,
asymptotically all values of ⌧

n

are either larger than U
s

or
smaller than L

s

. Therefore, if those values are large then
this guarantees a smal asymptotic error rate. This intuition
is further explored in Section VII.

VI. SOCIAL LEARNING WITH BINARY PRIVATE SIGNALS

For illustrating the results of the previous section, we
present an application of our framework to study social
systems where the private signals are binary. Please note
that that such binary systems are popular in the literature,
being extensively discussed, e.g. [38], and experimentally
validated [70]. Further applications to systems with other
private signal distributions can be found in Appendix C.

In the following, first Section VI-A presents results valid
for the general binary case, and then Section VI-B focuses in
the case of private signals with structure similar to a binary
symmetric channel.

A. General results

Let us consider focus our analysis on the general case of
social systems where the agents have access to binary signals,
i.e. S = {0, 1}. Let us denote the false alarm and miss-
detection rates by ✏

w

= P
w

{S
n

= 1� w} for w 2 {0, 1}, and
assume without loss of generality that max{✏0, ✏1}  1/2.

A direct computation of ⇤
S

gives that

⇤

S

(S
n

) = S
n

log

1� ✏1
✏0

+ (1� S
n

) log

✏1
1� ✏0

. (20)

Note that U
s

= ⇤

S

(1) > 0 > ⇤

S

(0) = L
s

, which is
consequence of the fact that 1 � ✏1 � ✏0. Correspondingly,
the c.d.f. of ⇤

S

(S
n

) for given W = w is a step function
given by

F⇤
w

(⌧) =

8

>

<

>

:

0 if ⌧ < L
s

,
P
w

{S
n

= 0} if L
s

 ⌧ < U
s

,
1 if U

s

 ⌧ .
(21)

As an inmediate observation, Proposition 1 guarantees that
if ⌧1 = ⌘ + ⌫ < L

s

, then X
n

= 1 for all n, triggering a
trivial global information cascade. Equivalently, if ⌧1 > U

s

then X
n

= 0 for all n. Therefore, for avoiding trivial scenarios
it is always assumed that ⌧1 2 [L

s

, U
s

].
Let us compute the log-likelihoods of the social decisions.

A simple application of (11) and the fact that L
s

 ⌧1  U
s

,
it can be concluded that X1 = S1 almost surely. Therefore,
by comparing (13) and (20), one obtains that

⇤

X1(X1) = ⇤

S

(S1) , (22)

where the equality holds almost surely. An analogous analysis
reveals that

⇤

Xn|Xn�1
(X

n

|Xn�1
) =

(

⇤

S

(S
n

) if ⌧
n

(x

n�1
) 2 [L

s

, U
s

],
0 in other case.

Therefore, using (13) and (15) is clear that

⌧
n

(X

n�1
) = ⌫ + ⌘ �

nc�1
X

k=1

⇤

S

(S
k

) (23)

for all n � nc, where nc is the first agent who experiences
a local information cascade. Therefore, the evolution of ⌧

n

can be described as follows: it starts at ⌫ + ⌘ and evolves
taking upward steps of size �L

s

or downward steps of size
U
s

, stoping as soon as it reaches beyond [L
s

, U
s

].
The above derivation illustrates the result stated by Theo-

rem 1, showing how ⌧
n

stops evolving after reaching beyond
the range of values of the private evidence. Moreover, it also
shows how the global information cascade corresponds to the
fact that the social network stops processing new data after
the first agent suffers a local information cascade.
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B. Binary symmetric channel

Let us now specify our analisys by considering a case where
the false alarm rate is equal to the miss-detection rates, which
correspond to a binary symmetric channel with cross-over
probability ✏0 = ✏1 := ✏. The symmetry of this scenario
allows to relate the evolution of the decision threshold with a
random walk and find close-form expressions for the cascading
probabilities.

As a first step, by realizing that in this case ⇤

S

(1) =

�⇤(0) = log

1�✏

✏

, it is clear that (23) can be re-written as

⌧
n

= ⌫+⌘�k0⇤(0)�k1⇤(1) = ⌫+⌘+(k0�k1) log
1� ✏

✏
,

where k0 and k1 are the number of decisions equal to 0 or
1 made by the agents before nc. Therefore, (24) shows that
in this scenario ⌧

n

evolves following a random walk over the
set {⌫ + ⌘ + k log 1�✏

✏

; k 2 Z}, which gets trapped as soon
as |⌧

n

| > log

1�✏

✏

(c.f. Figure 6). A direct inspection shows
that k might only take four possible values: �1, 0, 1 and 2 if
⌫ + ⌘ < 0 or �2,�1, 0 and 1 if ⌫ + ⌘ > 0. An example of a
realization of one decision sequence is illustrated in Figure 7,
where one can observe an information cascade being triggered
as soon as the decision threshold leaves the area demarcated
by red lines.

Fig. 6: The evolution of the decision threhold for fully connected
social networks with binary private signals can be characterized as a
random walk in the decision signal space. Every decision X

n

= 1 or
X

n

= 0 causes steps to the left or right, respectively. When random
walk moves away of the interval defined by the private believes of
each agent, then the random walk stops and an information cascade
is triggered.

With this characterization, the probability of information
cascade of 1’s or 0’s, denoted as P {C1} and P {C0}, can
be found using the theory of Random Walks and Ruin Prob-
lems [107]. For this, let us consider a Random Walk over the
numbers 0, 1, 2 and 3, which starts either at 1 or 2 and stops
when it first hits 0 or 3. Without loss of generality (due to
the symmetry of the scenario), we assume that each upward
step occurs with probability ✏ while each downward step take
place with probability 1�✏. Let us denote by q

z

the probability
of hitting 0 before 3, and p

z

the probability of hitting the 3

before the 0, both when the random walk starts from position
z. Then, a classic result of random walk theory (c.f. [107, pg.
345]) states that q

z

= 1� p
z

and

q
z

=

1�
⇣

✏

1�✏

⌘3�z

1�
⇣

✏

1�✏

⌘3 , (24)
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Fig. 7: Up- Sequence of decisions in a social system with binary
symmetric signals, cross-over probability ↵ = 0.35 and ⌫+⌘ = 0.1.
Down- Evolution of the decision threshold ⌧

n

for the same system.
As Theorem 2 predicted, a global information cascade is triggered
after the decision threshold reach beyond the limits imposed by the
bounded private beliefs (marked by the red lines), which takes place
after the decision of the sixth agent.

where �
✏

= (1 � ✏)/✏. Therefore, q1 can be understood as
the probability of having a correct cascade (e.g. a cascade of
1’s when W = 1) when ⌫ + ⌘ 2 [� log

1�✏

✏

, 0], i.e. when
having favorable priors (c.f. Figure 6). On the other hand, q2
corresponds to the case where ⌫ + ⌘ 2 [0, log 1�✏

✏

], i.e. to the
rate of correct cascades when the priors are not favorable. The
accuracy of these expressions for predicting the cascade rates
have been verified by numerical simulations (see Figure 8).
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Correct cascade rate − non−favorable priors (theoretical)

Correct cascade rate − non−favorable priors (simulations)

Fig. 8: Rate of the correct cascade (e.g. P {C1} if W = 1) for
different priors, as described in Section VI-B. Results confirm that
the evolution of social learning for binary signals can be accurately
described by a random walk model, and that (24) effectively predict
the corresponding cascading rates.

The characterization of the threshold’s evolution in terms
of a random walk introduces clear insights about the social
learning process. For example, the above results show how two
agreed consecutive decisions are sufficient to trigger a global
information cascade (c.f. Figure 6). In contrast, Appendix C
shows how more complex private signals can make it more
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difficult to trigger global cascades.

VII. ANALYSIS OF THE AVERAGE COST

In this section we study the evolution of the agent’s cost,
which is a natural metric to evaluate the performance of
social learning. First, Section VII-A provide general close-
form formulas that enable efficient numerical evaluations.
Then, Section VII-B use these results to provide upper bounds
to the asymptotic cost, which clarify the impact of information
cascades over the learning process.

A. Computing the average payoff
A direct calculation shows that the average payoff of the n-

th agent under a Bayesian strategy, as defined in Section IV-B,
can be expressed as

¯U
n

(⇡b) =
X

w2{0,1}
g2Gn

P
w

{G
n

= g

n

}P {W = w}

⇥
Z

S
u
n

(w,⇡b{s, ⌧n(g
n

)})dµ
w

(s) (25)

=

X

w2{0,1}
g2Gn

P
w

{G
n

= g

n

}P {W = w}

⇥
⇣

u
w,0F

⇤
w

(⌧
n

(g

n

)) + u
w,1

⇥

1� F⇤
w

(⌧
n

(g

n

))

⇤

⌘

,

(26)

where the first equality is consequence of the conditionally
independency of S

n

and G

n

given W = w, and the second
equality of (V-B) and the fact that ⇡b is a binary variable. Note
that a direct evaluation of (26) is possible using the algorithm
to compute P

w

{G
n

= g} given by Appendix E.
With the above results it is possible to perform numerical

evaluations of the exact performance of social learning in
diverse scenarios. This is illustrated in Section VIII for the
case of different private signal statistics.

B. Asymptotic performance analysis
In this section we derive lower bounds for the asymptotic

payoff lim

n!1 ¯U
n

(⇡b) :=

¯U1(⇡b). This quantity is a key
performance metric for large social networks. Although the
exact value can be estimated by numerical evaluations using
the formulas presented in Section VII-A, in most cases the
complexity of the computations that are required to reach
the point of convergence. Therefore, the simple upper bounds
presented in this Section provide valuable insights of this
important metric.

For this, let us first present Proposition 4, which considers
the statistics of ⌧

n

. Note that, because ⌧
n

is a deterministic
function of G

n

, is possible to express its statistics as

P
w

{⌧
n

= t} =

X

g2Gn
⌧n(g)=t

P
w

{G
n

= g} . (27)

Proposition 4. For arbitrary social systems with partial social
information, it holds that

¯U1(⇡b) = lim

n!1
E {�(⌧

n

)} , (28)

where �(·) is defined as

�(t) =
⇣

u0,0F
⇤
0 (t) + u0,1

⇥

1� F⇤
0 (t)

⇤

⌘

�(t� ⌫)

+

⇣

u1,0F
⇤
1 (t) + u1,1

⇥

1� F⇤
1 (t)

⇤

⌘

�(⌫ � t).

Proof: See Appendix D.
Note that �(·) measures the contribution of each t 2 T

n

to the average costs. In particular, following the results of
Sections IV, let us consider a possible cascade of 0’s generated
by t0 � U

s

. Note that, under that condition, then F⇤
0 (t0) =

F⇤
1 (t0) = 1. Then, using the previous proposition, the contri-

bution of this potential cascade to the asymptotic average cost
can be found to be �(t0) = u1,0 � (u1,0 � u0,0)�(t0 � ⌫).
Interestingly, when t0 � ⌫ ⇡ 0 then �(t0) ⇡ (u1,0 + u0,0)/2,
which is the payoff of a random guess. On the other hand,
due to u0,0  u1,0 (c.f. Section IV-C), when t0 ! 1
then �(t0) decreases monotonically towards a limit given by
�(t0) ! u0,0, being this the payoff of a perfect prediction.
An equivalent analysis can be done for the case of cascades
of 1’s where t  L

s

, showing that for that case �(t) =

u0,1+(u1,1�u0,1)�(⌫� t) and hence where a more negative
value of t reduces the impact of cascades. These insights
motivate us in calling the quantity |t � ⌫| the “accuracy”
or predictive power of a cascade. Then, the brief analysis
provides the following important insight: cascades with a
higher accuracy have a smaller impact over the asymptotic
cost.

As a next step, we use these insights to develop an upper
bound to the average cost. The main idea is that U

s

and
L
s

impose natural restrictions over the threshold values of
information cascades, and hence can be used to consider the
performance of a worst-case-scenario.

Theorem 3. Let us consider a social network with consistent
distortion and bounded beliefs. Moreover, assume that the
network end up in a information cascade almost surely. Then,
the following lower bound holds:
¯U1(⇡b)  h0(Us

� ⌫)P {C0}+ h1(⌫ � L
s

)P {C1} . (29)

where h
w

(x) := u1�w,w

� (u1�w,w

�u
w,w

)�(x), and C0 and
C1 denote the events of cascades of 0’s or 1’s, respectively.

Proof: See Appendix D.
Although we provide closed-form expressions for P {C1}

and P {C0} for some special cases (c.f. Section VI-B), in
general these terms are difficult to compute. Nevertheless, they
can be calculated by Monte Carlo simulations. Furthermore,
one can use the following simpler bounds, whose proofs are
direct and left to the interested reader.

Corollary 1. For a social network that satisfies the conditions
of Theorem 3, the following upper bound holds:

¯U1(⇡b)  max

n

h0(Us

� ⌫), h1(⌫ � L
s

)

o

. (30)

Finally, let us study the case of u0,0 = u1,1 = 0 and u0,1 =

u1,0 = 1, for which
¯U
n

(⇡b) = P {X
n

6= W} (31)

=

X

w2{0,1}

P
w

{X
n

= 1� w}P {W = w} . (32)
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Let us introduce the shorthand notation P1(FA) =

lim

n!1 P0 {Xn

= 1} and P1(MD) = lim

n!1 P1 {W = 0}
for the asymptotic false alarms and miss-detection rates,
respectively. The next corollary provides useful expressions
for those quantities.

Corollary 2. For a social network that satisfies the conditions
of Theorem 3, then the following formulae hold:

P1(FA)  �(�U
s

)P0 {C0}+ �(L
s

)P0 {C1} ,
P1(MD)  �(�U

s

)P1 {C0}+ �(L
s

)P1 {C1} .
Proof: From (32) is clear that

¯U1(⇡b) = P1(FA)P {W = 0}+P1(MD)P {W = 1} . (33)

Now let us consider the case of u0,0 = u1,1 = 0 and u0,1 =

u1,0 = 1, for which ⌫ = 0 and h0(x) = h1(x) = �(�x).
Hence, the bound provided in (29) can be re-written as

¯U1(⇡b) 
X

w2{0,1}

h

�(�U
s

)P
w

{C0}
+ �(L

s

)P
w

{C1}
i

P {W = w} . (34)

The corollary is proven by comparing (33) and (34) and real-
izing that they both hold for any choice of priors P {W = w}.

One of the main consequences of these results is the
fact that —as long as the system has consistent distortion—
one can provide a bound of the asymptotic error rate based
exclusively in the extreme values of the signal log-likelihood.
For illustrating this point, let us consider a system where
L
s

= �U
s

. Then, as a consequence of Corollary 2, one can
directly guarantee that the false alarms and error rates are
smaller than �(�U

s

) = 1/(1 + eUs
). Reciprocally, one can

guarantee that the asymptotic error rate is less than p0 if both
U
s

and �L
s

are both larger than log{p�1
0 � 1}.

VIII. NUMERICAL RESULTS

This section present numerical results that illustrate the
findings presented in Sections V and Section VII. Our aim is to
show how our approach allows to find quantitative conclusions
about the achievable performance of social learning, providing
an engineering perspective that complements the more quali-
tative results that exist in the social science literature.

In the sequel, we use our results to show to aspects of social
learning. First, Section VIII-A presents an Algorithm based on
the results of Section V to simulate decision sequences, and
also illustrate how the decision threshold evolves in accordance
to the learning process. Then, Section VIII-B uses the results
of Section VII in order to to compare the achievable quality
of the inference developed by social learning in scenarios with
different private signals statistics. For simplicity, through this
section we focus in the case of flat priors (i.e. ⌘ = 0) and
u1,1 = u0,0 = 0 and u1,0 = u0,1 = 1 —and hence ⌫ = 0.

A. Simulations of decision sequences
The results presented in Section V-B allow us to develop

an efficient algorithm to simulate decision sequences following
diverse signal statistics. Algorithm 1 implements this, using as

inputs ⌘, ⌫, the state of the world w, the network size N , the
distortion coefficients and the signal statistics in the form of
the c.d.f. of the signal log-likelihood F⇤

0 (·) and F⇤
1 (·).

We used Algorithm 1 to generate decision sequences under
diverse private signal statistics. Please note that if the private
signals follow a Natural Exponential family distribution‡ then
the corresponding signal log-likelihood is simply a linear
function. In fact, a Natural Exponential Family distribution
p.d.f. can be expressed as

P
w

{S
n

= s} = exp{s · ✓(w) + h(s)� b(w)} , (35)

where ✓(w) is the natural parameter, h(·) is the carrier measure
and b(·) is the log-normalizer, and therefore the corresponding
log-likelihood can be written as

⇤

Sn(Sn

) = S
n

[✓(1)� ✓(0)]� [b(1)� b(0)] . (36)

Because of this reason, Gaussian signals have unbounded
private beliefs, as in this case S

n

2 (�1,1). On the
contrary, as exponential distributions S

n

2 [0,1) then the
corresponding beliefs are bounded in one side and unbounded
in the other, allowing only cascades of 1’s if ✓(1) � ✓(0) is
positive and only cascades of 0’s if it is negative. On the
other hand, any discrete distribution with finite support has
bounded beliefs, as the private signal log-likelihood can take
only a finite number of different values.

Our simulations reflect these results, and illustrate the in-
sights discussed with respect to Proposition 1 and Theorem 2.
For signals with bounded beliefs a global information cascade
is triggered as soon as the evolution of the decision threshold
⌧
n

drives it away from [L
s

, U
s

]. This is illustrated by Figure 9,
where it can be seen that after ⌧

n

goes beyond the red
lines which are further away from zero (which correspond to
the extreme values of ⇤

S

(S
N

)) a sequence of homogeneous
decisions is triggered. On the other hand, our simulations
show that under Gaussian signals even very long sequences
of equal decisions can be suddenly reversed when a signal
with high enough log-likelihood is founded. As an example
of this, Figure 9 shows how in a system with Gaussian private
signals a sequence of 1’s take place after a sequence of almost
500 consecutive 1’s.

Interestingly, our simulations also show that decisions that
confirm a trend have a diminishing impact (smaller step size)
over the evolution of the decision threshold. For example,
the plots that correspond to Binomials and Exponentials in
Figure 9 show that the subsequent step-sizes decrease when the
value of ⌧

n

moves away from zero. On the contrary, the same
figures show how decisions that go against the majority of
previous choices induce important jumps, which corresponds
to a high amount of new information that is included in the
inference process. Correspondingly, the fact that ⌧

n

is constant
after a global information cascade is trigger corresponds to the
fact that no new information is being processed by the social
learning —and hence the accuracy of future agents does not
increase further but stays constant.

‡Many well-known distributions belong to the Natural Exponential Family,
including Bernoulli, Binomial, Poisson, Negative Binomial, Gaussian with
known variance and Exponential distributions among others.
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Algorithm 1 Simulation of social decisions
1: function DECISION VECTOR(N, ⌘, ⌫, w)
2: ⌧1 = ⌫ + ⌘.
3: P0 {X1 = 0} = F⇤

0 (⌧1).
4: P1 {X1 = 0} = F⇤

1 (⌧1).
5: Generate x1 ⇠ Bernoulli(P

w

{X1 = 0}).
6: for n = 2, . . . , N do
7: for 8g 2 G

n

do
8: P0 {Gn

= g} = ↵
n

(g|x1)P0

�

X

n�1
= x

n�1
 

.
9: P1 {Gn

= g} = ↵
n

(g|x1)P1

�

X

n�1
= x

n�1
 

.
10: ⇤

Gn(g) = log

P1{Gn=g}
P0{Gn=g} .

11: ⌧
n

(g) = ⌫ + ⌘ � ⇤

Gn(g).
12: P0

�

X
n

= 0|Xn�1
= x

n�1
 

=

P

g2Gn
↵(g

n

|xn�1
)F⇤

0 (⌧
n

(g

n

))

13: P1

�

X
n

= 0|Xn�1
= x

n�1
 

=

P

g2Gn
↵(g

n

|xn�1
)F⇤

1 (⌧
n

(g

n

))

14: Generate x
n

⇠ Bernoulli(P
w

�

X
n

= 0|Xn�1
= x

n�1
 

).
15: P0 {Xn

= x

n} = P0

�

X
n

= x
n

|Xn�1
= x

n�1
 · P0

�

X

n�1
= x

n�1
 

.
16: P1 {Xn

= x

n} = P1

�

X
n

= x
n

|Xn�1
= x

n�1
 · P1

�

X

n�1
= x

n�1
 

.
17: return x
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Fig. 9: Above- Sequence of decisions in a social system generated using Algorithm 1, assuming perfect social information and diverse signals
statistics. Bellow- Evolution of the corresponding decision threshold ⌧

n

. Confirming Proposition 1 and Theorem 2, as soon as the decision
threshold —Tau, Y-axis— reaches beyond the the possible values of the private signals (marked by red lines), the decision threshold stops
evolving and the network falls into a global information cascade.

For completeness, simulations over signals with Cauchy
distributions with fixed scale and variable location coefficients
were included in order to illustrate that these results also hold
under continuous signal with bounded private beliefs. The
interested reader can find an analysis of Cauchy signals in
Appendix C.

B. Evaluation of payoffs
Numerical evaluations confirmed the accuracy of the ex-

act expressions and bounds derived in Section IV for the
error rates. Figure 10 compares the performance attained by
social networks with perfect social information when they
are driven by various signal statistics. In accordance to the
results presented in Section III, the error rates converge to a
value larger than zero when the signals have bounded beliefs
and hence global information cascades take place, while they

converge to zero in other case (e.g. Gaussian signals in
Figure 10). Interestingly, results suggest that the error rates
do not converge to zero when the signals are bounded in one
side —and hence only allow cascades of either 0’s or 1’s,
which in Figure 10 corresponds to the Poisson distribution.
It is also interesting how Cauchy distributions achieve a very
poor performance, although being a continuous distribution
(c.f. Appendix C).

Our results also confirmed the intuition that the asymptotic
error rate depends mainly on the extreme values of the signal
likelihood (c.f. the corresponding discussion in Section IV). In
effect, if the signal parameters are chosen in a way that they
possess the same values of U

s

and L
s

, then the asymptotic
value is generally close to the value predicted by Theorem 3
(see Figure 11). It is to be noted that, if Poisson distributions
are chosen in such a way that it’s single extreme value of the
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Fig. 10: Evolution of the error rate for various signal statistics, as
given by (26), and the upper bound presented in (30). The parameters
of the different distributions were chosen in order to provide a error
rate of 10�2 for the first agent, while the binomial distribution has
a support of n = 6.

2 4 6 8 10 12 14
10

−5

10
−4

10
−3

10
−2

Agent

In
fe

re
n
ce

 e
rr

o
r 

ra
te

 

 

Binomial signals, n=6
Binomial signals, n=3
Poisson signals
Cauchy signals

Fig. 11: Evolution of the error rate for various signal statistics, as
given by (26), and the upper bound presented in (30). The parameters
of the different distributions were chosen in order to provide a error
rate of 10�2 for the first agent, while the binomial distribution has
a support of n = 6.

signal log-likelihood coincide with one of the values of the
other signals, it’s asymptotic error rate is approximately half
than the other; this corresponds with the fact that only half
of the information cascades happen (c.f. the corresponding
discussion about Poisson distributions in Section VIII-A).

Finally, although different signal statistics with similar ex-
treme values converge to the same value, Figure 11 shows
different convergence speeds. It is reasonably to postulate that
the convergence speed is related to the Total Variation distance
of the corresponding probability density functions [104], but
the proof of this conjecture remains open.

C. Discussion

An important insight that springs out of our analysis is
that information cascades are not intrinsically prejudicial for
the performance, as their impact is conditioned over their

accuracy. In effect, in a case where cascades would be always
correct then the asymptotic performance would be perfect in
despite of the cascading behaviour. Therefore, the asymptotic
performance of social learning is not limited by the cascading
itself, but by the corresponding “cascade accuracy” (c.f. Sec-
tion VII-B). In the case of Bayesian strategies, our framework
shows that the cascade accuracy is directly related with the
extreme values of the private signal log-likelihood. Interest-
ingly, this allows to conclude that social learning can provide
error rates as small as desired if the system designer can
engineer the private signal statistics appropriately. Therefore,
this data aggregation method does not impose, by itself, any
lower bounds on the achievable performance.

The proposed framework is based on two important simpli-
fying assumptions: the conditional independency of the private
signals and the assumption of perfect rationality of the agents.
Please note how these assumptions allow a detailed analytic
approach, which allows to generate a first understanding on
such a challenging topic.

IX. APPLICATION TO CYBER-PHYSICAL SYSTEM
SECURITY

This section reviews an application of information cascades
in the field of cyber-physical security, following the work
reported in [108]. This application is novel in taking advantage
of some of characteristics of information cascades that are
traditionally regarded as undesired. In the following, first
Section IX-A provides the necessary context and discusses
the application. Then, Section IX-B presents the system model
and fundamental assumptions. The leveraging of information
cascades in this scenario is discussed in Section IX-C, and
finally some numerical results are presented in Section IX-D.

A. CPS security as a dilemma in sensor networks design
Security plays a critical role in cyber-physical systems

(CPSs), particularly for those involved in public utilities whose
safety is critical [21]. In effect, recent attacks to public CPSs
that created significant damages have been widely reported.
There exist many technological challenges for the security
in nowadays’s cyber-physical systems. Moreover, as more
cyber-control automation is progressively entering our daily
life, guaranteeing CPS security will become even a more
challenging subject. As the level of security is determined by
the weakest element of the entire system, one major dilemma
lies in the information fusion that takes place on the sensor
networks that supply vital information to control and manage
the CPS. The main weakness of these sensor networks are
described in the sequel.

• In such networks the number of sensors is significantly
large, and hence sensors are usually deployed randomly
(i.e. the location of each sensor might be unknown to
the system controller). A precise management of them
is therefore challenging or even unfeasible. Furthermore,
a good portion of the sensors might be deployed in
geographical regions where it is not possible to warrant
physical or cyber security (e.g. war zones or regions
controlled by an adversary party).
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• Typical low-end (i.e. low-cost) sensors are only able
to perform low-complexity computing and networking.
Therefore, it is nearly impossible to implement reliable
security functions and protocols of high complexity.

• Sensor data from these low-complexity sensors may be
unreliable due to malfunctions in terms of measurement,
computing, or battery. Data can also be corrupted or
delayed because of link outages or packet errors resulted
from noise and interference in wireless communications,
or also due to spectrum-sharing or energy-harvesting
opportunities.

The vulnerability of these systems makes it reasonable to
expect that they might be victims of cyber/physical attacks
by intelligent adversaries. This is particularly critical to low-
end sensor networks that are usually at the edge of large and
complex CPS.

Due to above reasons, although the technical challenges
of the design of secure wireless sensor networks have been
widely studied [109], there remain open problems of both
theoretical and engineering nature [110]. Attacks to wireless
sensor networks are commonly categorized into outside attacks
and insider attacks. Outside attacks include (distributed) denial
of services (DoS) attacks facilitated by cyber- or physical-
means, which are facilitated by the broadcasting nature for
wireless communications [109]. Insider attacks can create
potentially more severe harm to CPS, where the adversary
can recruit low-complexity sensors by malware through cy-
ber/wireless means, or by physical substitution of targeted
sensor nodes. These compromised sensor nodes can report
false data in order to create harmful results and malfunctions,
which is related to the well-known Byzantine Generals prob-
lem [111]. Low-complexity sensors at the edge of CPS are
natural targets of such insider attacks.

A traditional sensor network consists of a fusion center
and regular sensors nodes. Most of the literature assume that
the fusion center is capable of executing secure coding and
protocols. It is to be noted that in large CPS, the sensors
at the edge of the network may require another kind of
mediator devices known as data aggregators (DAs), which
have the capability to access the cloud through high-bandwidth
communication [112]. DAs are surely attractive to insider
attacks. Differing from almost all existing research, this project
assumes that DAs and fusion centers are possible to be
recruited and compromised.

In response to the technology challenges related to the
development of resilient low-end sensor networks that are
capable of facing an intelligent adversary, the desirable sensor
fusion mechanism shall be robust and adaptive to the existence
of compromised sensor nodes and false data. In this way,
the adapted operation can be subsequently reconstituted [113]
if there exists a reliable and secure management. This is
similar to the concept of cyber resilience, which was officially
proposed in 2012 World Economy Forum. Therefore, the goal
of the proposed methodology is
(1) to establish a resilient operation with the presence of an

unknown number of compromised sensors, and
(2) to enable a resilient sensor fusion even in the presence

of false data from compromised sensors.

B. Scenario description and main assumptions

Consider a sensor network composed of N sensor nodes,
which are deployed over an area for the purpose of monitoring
or surveillance. Based on the sensor’s signals, the network
shall infer the value of the binary random variable W , with
events {W = 1} and {W = 0} corresponding to the presence
or absence of an intrusion, respectively. No knowledge about
of the prior distribution of W is assumed, as intrusions are
rare and have unknown/unpredictable patterns.

Battery limitations impose severe restrictions on the com-
munication between sensors, and hence each node is assumed
to forwards data to others by broadcasting only a binary vari-
able. Under a medium access control mechanism, and without
loss of generality, sensor nodes are assumed to transmit their
signals sequentially according to their indices. Due to the
nature of wireless broadcasting, nearby transmissions can be
overheard. Therefore, it is assumed that the n-th node can
generate its decision based on its own sensor output and the
signal exchanged by other sensors.

A data aggregator or fusion center collects the transmit-
ted data and is recognized as a specific node denoted as
nFC 2 {1, ..., N}. The performance of the entire sensor
network is quantified by the corresponding miss-detection
and false alarm rates in the fusion center, given by PMD =

P {X
nFC = 0|W = 1} and PFA = P {X

nFC = 1|W = 0} re-
spectively.

1) Powerful insider attack: During the attack, it is assumed
that there are N⇤ Byzantine nodes controlled by an adversary,
while the network management does not know this situation. It
is important to notice that these Byzantine nodes may include
DAs or FCs. The adversary can therefore freely define the
values of the binary signals transmitted by Byzantine nodes in
order to degrade the sensor network performance, which might
be viewed as a man-in-the-middle attack or false data inject
attack. It is further assumed that the adversary is topology-
aware, knowing the sensor sequence and the strategy in use.
In other words, this is a very powerful attack from inside of
the sensor network.

2) Defense without knowledge of attack: In most (surveil-
lance) sensor networks, miss-detections are more important
than false alarms. Furthermore, it is difficult to estimate
the cost structure under the worst-case scenario. Therefore,
the Neyman-Pearson criteria shall be selected by setting an
allowable false alarm rate and focusing on the achievable
miss-detection rate. Most signal processing techniques for
distributed detection rely on a FC(s) that gather data and
generate estimators [114]. In order to guarantee diversity,
traditional distributed detection schemes choose to ignore
previously broadcasted signals. However, as regular sensors
do not perform any data aggregation, each of the overheard
signals cannot serve as a good estimator of the target variable.
When there exist Byzantine nodes in sensor network, various
techniques have been proposed, such as identification and
removal of Byzantine sensors, cryptography, secure proto-
cols [115], but none of them consider potential Byzantine
DAs or FCs. Consequently, it is very desirable for sensor
network management to find an appropriate network-resilient
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strategy to mitigate the effect from this powerful topology-
aware adversary, especially when the network manager (i.e.
defender) has no knowledge of the number of Byzantine nodes
or other statistics of the attack.

Inspired by collective behavior and social learning, a totally
different philosophy is undertaken to face this problem. Each
sensor node can be considered to be a rational agent that
decides sequentially about the presence of attacks, based on
a Bayesian data fusion of their measurements and overheard
signals from other nodes. Of course, the Byzantine sensors
do not follow this strategy as their goal is to bring down the
sensor fusion performance. Let B denote the set of indices
of Byzantine nodes in the sensor network, where N⇤

= |B|.
In the example of intrusion detection, as events {W = 0}
are much more frequent than {W = 1}, any abnormal
increase of the false alarm rate would be quickly noted by the
operator, which is undesirable to the adversary. Consequently,
the adversary strategy is to increase the miss-detection rate as
much as possible, which is achieved by forcing null signals
for all n 2 B.

C. Leveraging information cascade

Intuitively, the accuracy of the n-th sensor grows with n,
and hence nFC is usually chosen as one of the last nodes in the
decision sequence. However, as the number of shared signals
grow, the increasing social belief can make the nodes to ignore
their individual measurements and fall into and information
cascade. Interestingly, one unique aspect of this approach is
to identify a positive effect of information cascades, which has
been overlooked before. In effect, information cascades make
a large number of nodes to hold equally qualified estimators,
generating a large number of locations in the network where
the network operator can collect aggregated data. This property
avoids single points of failure, providing robustness against
topology-aware false data injection attacks.

On the other hand, an attacker can also leverage the informa-
tion cascade phenomenon. In fact, a rational attacking strategy
is to tamper the first N⇤ nodes of the decision sequence,
setting their signals in order to push the networked decisions
towards a misleading cascade or a misleading public belief. If
N⇤ is large enough, an information cascade can be triggered
almost surely, making the learning process to fail. However,
if N⇤ is not large enough then the network may undo the
initial pool of wrong opinions and end up triggering a correct
cascade anyway. Therefore, to achieve resilient sensor fusion
against false data attacks, the trustworthy sensor networking
shall be conducted in clusters for any large sensor network.
Luckily, since sensors are usually equipped with very short-
range radios and sequentially multiple access, such a clustering
strategy is consistent with engineering reality.

More precisely, the proposed sensor fusion does not solely
rely on the security mechanisms to against the attacks, but take
advantage of public belief to enhance its capability against
attacks. As DA or FC usually serves as the last node to
transmit the measurement (i.e. announce the decision), both
measurement and public belief are simultaneously disclosed
to report fusion result for CPS operation and implicit security
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Fig. 12: The top figure presents the performance (i.e. miss-detection
rate for fusion) of a surveillance sensor network of 200 nodes,
while the lower figure shows the same quantity when only the 10%
less favorable cases are considered. Different curves correspond to
different number of compromised sensors. When considering total
miss-detection rate, up to 60 compromised sensors —that is 30% of
sensor nodes— the fusion still functions well. The performance floor
for 100 compromised sensors implies exceeding the bound of the
Byzantine Generals Problem.

status for the trust management in the CPS. Please note that a
social learning data fusion mechanism is generally compatible
to any cryptograph and secure networking protocol.

D. Numerical results
To illustrate the application of social learning against

topology-aware data falsification attacks, a network of ran-
domly distributed sensors over a sensitive area following a
Poisson Point process (PPP) was considered. The ratio of
the total area that falls under the range of each sensor is
denoted by r. It is assumed that intrusions can occur uniformly
over the surveilled area, and hence the probability of an
intrusion taking place under the coverage area of a particular
sensor is equal to r. It is further assumed that each node
is equipped with a binary sensor (i.e. S

n

2 {0, 1}) that
might generate wrong measurements due to electronic and
other imperfections. Figure 12 shows the social learning based
fusion successfully against Byzantine data attacks.

X. FURTHER APPLICATIONS

This section presents a brief exploration to other appli-
cations of information cascades and social learning. In the
following, Section X-A explains how the steering of infor-
mation cascades can be supervised and controlled, and dis-
cusses promising applications to e-marketing and e-commerce.
Then, Section X-B introduces the potential applications of
information cascades to consensus building problems. Finally,
Section X-C gives a vision on the way of connecting social
learning and machine learning applications.
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A. Steering information cascades
This subsection presents a discussion about design consid-

erations for steering information cascades in a social system
where agents perform Bayesian social learning, following the
work reported in [39].

1) Design of social systems: Information cascades play a
sensible role in e-commerce and e-marketing [39]. In effect,
it is intuitive that customers might tend to choose a given
product when they find many positive comments about it
online. Conversely, customers might be prone not to choose the
product when facing a significant number of negative reviews.
Therefore, for marketing purposes, an information cascade of
positive reviews is highly desirable as it can increase sales
volume. It is clear that information cascades can usually be
steered by manipulating social information, e.g. by creating
biased reviews or introducing fake statistics. Therefore, if
people have the ability to selfishly manipulate information
cascades, then the integrity and trust of the e-commerce
system will be compromised. Therefore, the design of tools
for preventing fake information cascades is a fundamental
challenge for the well-being of a digital society [5].

To approach this issue, a first step is to analize (8) using
a new perspective, from which ⇤

Sn is interpreted as personal
evidence, ⇤

Gn as the social observation, ⌘
n

as the bias
and ⌫

n

as the incentive structure of the n-th agent. In most
scenarios it is not possible to control the personal evidence and
bias, which can only be estimated experimentally. However,
in many cases the scope of the social observation and the
incentive structure are susceptible to be engineered, as the
system manager usually can modify the portion of the social
network that is available to the inspection of other agents (e.g.
determining a group of desirable reviews that shall be shown to
new customers). Similarly, the incentive structure can also be
engineered, say, by acknowledging good reviews with special
bonus, coupon, or discounts.

Following this rationale, selective rewiring is proposed as
a method to control or steer information cascades when the
social observations can be controlled by the system admin-
istrator. On the other hand, incentive seeding is served for
scenarios where the incentive structure can be engineered.

2) Selective rewiring: Let us denote by H
k

-cascade as a
cascade where X

m

= k for all m � nc, and by B
n

the
set of neighbours of the n-th agent. The intuition behind the
proposed selective rewiring approach is that, in order to steer
a H

k

-cascade, one can restructure the observation neighbour-
hood of the n-th agent B

n

to connect it with previous decisions
such that X

j

= k, or to disconnect it previous decisions where
X

j

6= k, where 1  j < n. The number of connections to
be added or deleted, denoted as N

z

and N
w

respectively, are
parameters to be defined by the system controller. A pseudo
code for implementing this idea is presented in Algorithm 2.

3) Incentive Seeding: In the case when the incentive struc-
ture can be engineered, the proposed approach is to first
identify the most influential agents within the system, and
set their incentive structure to the value ⌫⇤ in order to make
their decisions consistent with the desired cascade. Although
there exist multiple ways of defining “social influence”, in
this approach individuals were selected according to their

Algorithm 2 Selective Rewiring
1: Input: N

z

, N
w

,H
k

2: for n = 1, . . . , N do
3: Find Z

n

= {z|X
z

6= H
k

}, Z
n

⇢ B
n

, |Z
n

| = N
z

4: Find W
n

= {w|X
w

= H
k

}, W
n

\ B
n

= ?, |W
n

| =
N

w

5: B
n

 (B
n

\Z
n

) [W
n

out-degree number, denoted as dout
n

, which correspond to
agents whose decisions is seen by the larger number of other
agents [67]. The pseudo-code of the proposed algorithm is
presented in algorithm 3.

Algorithm 3 Incentive Seeding

1: Input: dout
min

, ⌫⇤,H
k

2: for n = 1, . . . , N do
3: if dout

n

� dout
min

then
4: ⌫

n

 ⌫⇤

4) Numerical results: The algorithms were tested over
various networks of different topologies, including fully-
connected networks, Erdös-Renyi random networks, small-
world networks, and scale-free networks [38], [67], [116]. The
private signals were assumed to follow a Binary Symmetric
channel with respect to the state of the world variable, similar
to the case analyzed in Section VI-B. The parameter of the
Binary Symmetric channel, denoted here as p, corresponds
to the agent’s private signal quality. Numerical simulations
were perform to compare how agents can form information
cascades under various setting, and to investigate the ways to
steer cascades efficiently.

Figures 13 and 14 demonstrate the ratio of H1-cascades that
can be steered by a system controller when the true state of
the world is W = 0, and see the relation to the signal quality.
Interestingly, results show that the social network topology
significantly affect the steering capability, which suggests
some practical system design considerations with respect to
particular types of network topology:

• For Erdös-Renyi networks, adding more links progres-
sively is an effective way of steering cascades.

• For small-world and scale-free networks, it is better to
combine the use of adding more new links and deleting
bad links.

• Small-world networks have small diameters, which helps
to resist control.

• Scale-free networks are similar to full observation net-
works.

Moreover, following these results, practical advices for dealing
with a network of an unknown type can be formulated:

• Deleting links is less effective than adding links.
• Merely connecting correct decisions do not perform well.
• It is better to start by discarding some wrong decisions,

and then to continue connecting correct decisions.
5) Discussion: The proposed methods can serve as a simple

guideline to the design of social systems based on manageable
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(a) Full observation network (b) ER network (c) Small-world network (d) Scale-free network

Fig. 13: Ratio of H1-cascades that can be steered by selective rewiring when W = 0 under various network topologies. Intuitively, when
the private signal is very good then all cascades follow the state of the world, hence reducing the possibilities of steering other cascades.

(a) Full observation network (b) ER network (c) Small-world network (d) Scale-free network

Fig. 14: Ratio of H1-cascades that can be steered using incentive seeding under different social network topologies. The value of dout
min

determines the minimal outdegree needed to be considered a influential agent whose incentives should be modified. Selecting an appropriate
dout
min

has a important impact over the algorithm performance [39].

online digital platforms. Moreover, it was demonstrated that
it feasible for a system designer to identify control variables
of a complex social system and use them to devise effective
unsophisticated algorithms for steering user behavior.

The presented numerical simulations illustrate the idiosyn-
crasies of different network topologies. These results leads to
the question of how to design efficient algorithms for steering
information cascades under more general constraints in the
network topology. Finally, another important issue is how the
incentive can be embedded in the network structure, which
points out interesting further research developments.

B. Consensus building in multi-agent system

Multi-agent systems abound in our modern world, including
groups of mobile robots and unmanned aerial vehicles (UAVs),
aircraft and satellites, and many more [19]. In these systems
agents need to make autonomous decisions, but at the same
time the controller need to ensure that the group as a whole can
achieve some desired goal. A primary challenge in the design
multi-agent systems is the optimization of control and comput-
ing aspects considering trade-offs between performance, delay
and communication costs or constraints [117].

Consensus building plays a crucial role in most of multi-
agent system protocols, being the subject of many works in
the control engineering literature. In particular, the flocking
problem [118] considers a set of autonomous agents that
can observe their neighbors dynamics (position, velocity, etc.)
in a 3-dimensional space, and use this data to adjusts their
movements accordingly to flock together with other agents. In
general the connectivity of a network of flocking agents de-
pends on the geometry of the space. The simplest connectivity
model may be the one where two agents i, j are said to be

connected if their distance is smaller than a radius r, that is,

k~q
i

� ~q
j

k < r,

where ~q
i

and ~q
j

are vectors that denote the position of the
agents in space. The design of an efficient flocking protocol is
full of challenges; we conjecture that information cascades and
social learning could be applied to the analysis and design of
flocking protocol, which is an open problem to be investigated.

Another interesting scenario, more related to complex so-
cial systems modeling [80], is the one provided by the
Hegselmann-Krause opinion dynamics model [119], [120]. As
in the DeGroot model [93], the Hegselmann-Krause opinion
dynamics model assumes that the opinion of the i-th agent can
be described as the weighted average of other agents’ opinions,
i.e.

x
i

(t+ 1) = a
i1x1(t) + a

i2x2(t) + ...+ a
in

x
n

(t),

which can also be written in matrix form as x(t + 1) =

A x(t). It is noted that, in either the flocking problem or
the Hegselmann-Krause opinion dynamics model, agents are
assumed to be able to observe their neighbor’s character-
istics. Hence, agents’ actions are based on these informed
observations from their counterparts, and therefore information
cascades are likely to play an important role on their dynamics.

We emphasize that consensus problems belong to the regime
of social learning problems. Definitely, consensus protocols
in multi-agents systems are a special type of non-Bayesian
social learning strategy. How to utilize the characteristics of
information cascades to the study of flocking and consensus
problem in multi-agent system is of paramount interest for a
wide range of applications related to large-scale CPS.
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C. Social learning for machine intelligence
Our interpretation of social learning as a data aggregation

scheme can be applied to machine learning [121], [122]. In
effect, by considering a scenario where there are a number of
interconnected learning machines, we can view each machine
as a social agent and the whole system as a social network,
where the neighbourhoods are determined by the degree of
interaction between different machines.

The primary objective of learning machines is to learn
from the patterns in their observations about the environment,
and hence minimize their prediction error with respect to a
given loss function. When the observation includes both the
data generated from the state of the world and the prediction
made by other learning machines, this scenario fit in the
social learning framework presented in this work. With the
detailed analysis of the average cost function in Section VII,
inspired by the work of [123], [124], it is noted that one can
characterize the interdependency among the loss functions of
learning machines. Therefore, the problem is how to design a
mechanisms for a networked machine learning system, which
can be very relevant for problems of Ensemble Learning.
Analytic techniques of social learning can be applied to study
the complex feedback that exists between each learning ma-
chine and the whole networked system. Do groups of learning
machines generate information cascades? Is the knowledge
about information cascades suitable to be used for improving
the achievable performance of systems of networked learning
machines? These issues constitute a promising application of
our proposed framework.

XI. CONCLUDING REMARKS

Although this paper presents a systematic analytical
methodology and an extensive literature survey with illus-
trating examples, many aspects of collective behavior in
human society and online platforms remain open to human
knowledge. Moreover, the impact they have on the techno-
logical development and our human society urge for further
explorations. Many possibilities to assist future technological
systems design are still on the horizon, and rely on the readers
of IEEE Access to make them come true.

APPENDIX A
PROPERTIES OF F⇤

w

In general F⇤
w

(x) can be directly computed from the statis-
tics of the signal distribution. For simplicity let us consider
the case of real-value signals, i.e. S

n

2 R. In this case, the
c.d.f. of the signal likelihood is given by

F⇤
w

(y) =

Z

Sy

dµ
w

(37)

where Sy

= {x 2 R|⇤
s

(x)  y}. If ⇤

s

is an increasing
function, then Sy

= {x 2 R|x  ⇤

�1
s

(y)} = (�1,⇤�1
s

(y)]
and hence

F⇤
w

(y) =

Z ⇤�1
s (y)

�1
dµ

w

= H
w

(⇤

�1
s

(y)) , (38)

where H
w

(s) is the cumulative density function (c.d.f.) of S
n

for W = w. For the general case where ⇤

s

is an arbitrary

(piece-wise continuous) function, then Sy can be expressed
as the union of intervals. Then [1

j=1[aj(y), bj(y)] = Sy (note
that ⇤

s

(a
j

(y)) = ⇤

s

(b
k

(y)) = y) and hence from (37) is clear
that

F⇤
w

(y) =
1
X

j=1

Z

bj(y)

aj(y)
dµ

w

=

1
X

j=1

[H
w

(b
j

(y))�H
w

(a
j

(y))] .

APPENDIX B
PROOFS OF SECTION V

Proof of Proposition 2: To prove the Markovianity, let us
first note that (V-B) implicitly show that X

n

is conditionally
independent of X

n�1 given ⌧
n

(in this case G

n

= X

n�1).
Therefore, (12) shows that ⌧

n+1 = ⌧
n

� �(X
n

, ⌧
n

), and
therefore if ⌧

n

is given then ⌧
n+1 depend only on X

n

and
hence is conditionally independent on X

n as well. Finally, the
Markovianity is proven by realizing that ⌧

k

is a deterministic
function of Xn, and hence also conditionally independent of
⌧
n+1 given ⌧

n

.
To prove that {⌧

n

}1
n=1 is still a sub- or super- martingale

with respect to X

n, depending on the realization of W = w.
In fact, it is direct to see that

E
�

⌧
n

|W = w,Xn�1 
= ⌧

n�1 �D
Xj |xj�1 (39)

where D
Xj |xj�1 is the conditional mean value of

⇤

Xj |Xj�1
(X

j

|xj�1
), which can be computed as

D
Xj |xj�1

= E
(

log

P1

�

X
j

|xj�1
 

P0

�

X
j

|Xj�1 

�

�

�

W = w,

)

=

(

D( p1|1,xj�1 || p1|0,xj�1
) if w = 1 , and

�D( p1|0,xj�1 || p1|1,xj�1
) if w = 0 ,

where p
xj |w,x

j�1
= P

w

�

X
j

= x
j

|Xj�1
= x

j�1
 

and
D(p||q) = p log p

q

+ (1 � p) log 1�p

1�q

is the Kullback-Leiver
divergence between two Bernoulli distributions with param-
eters p and q, respectively. The Lemma is finally proven by
the well-known non-negativity of the Kullback-Leiver diver-
gence [102].

Proof of Theorem 1: To start, let us note that for any
x 2 R the function ⇤

S

(s) introduces a partition over the signal
space S = S0

(x)[S1
(x), where s 2 S0

(x) if ⇤
S

(s) < x and
s 2 S1

(x) if ⇤

S

(s) � x. By comparing this with (10), one
can see that Sj

(⌧
n

) are the signals that cause ⇤

S

(S
n

) 2 Kj

n

,
and therefore is clear that

P
�

S
n

2 Sj

(⌧
n

)

 

= P {X
n

= j|⌧
n

} . (40)

Let us prove first that (i) , (ii). If ⌧
n

> U
s

then S1
(⌧

n

) =

? and therefore X
n

= 0 for all possible signals S
n

. Similarly,
if ⌧

n

< L
s

then X
n

= 1 for all possible signals. On the other
hand, if tau

n

2 [L
s

, U
s

] then is direct to see that there exist
signals such that X

n

= 0 or X
n

= 1, and hence X
n

and S
n

are not independent. Therefore, the condition ⌧
n

2 (�1, L
s

][
[U

s

,1) holds if and only if X
n

and S
n

are conditionally
independent given ⌧

n

.
Moreover, from the discussion in Section V-A is clear that

in a Bayesian setup X
n

= �(S
n

,Xn�1
) is a deterministic

function of the private signal and the previous decisions.
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Hence, the conditional independency of X
n

and S
n

given
⌧
n

—which is a function of X

n�1— is equivalent to X
n

to be a deterministic function of X

n�1. This is equivalent
for X

n

and W to be conditionally independent given X

n�1,
which in turns is equivalent to P

�

X
n

|W = 1,Xn�1 
=

P
�

X
n

|W = 0,Xn�1 , which guarantees (ii).
Let us show that (i)) (iii). The previous discussion showed

that (i) implies that X
n

and S
n

to be conditionally independent
given X

n�1. Moreover, the fact that (i) implies (ii) and
⌧
n+1 = ⌧

n

� ⇤

Xn|Xn�1
(X

n

|Xn�1
) shows that ⌧

m

= ⌧
n

for
all m > n. This, in turn, implies that (i) holds for all m > n.
Therefore, it can be seen that X

m

is a deterministic function of
X

n�1, and hence X
m

and S
m

are conditionally independent
on X

n�1 for all m > n, proving (iii).
To prove (iii)) (i), let us assume that (i) does not hold and

show this implies that (iii) also doesn’t. If ⌧
n

2 (L,U) implies
that both S0

(⌧
n

) and S1
(⌧

n

) are both not empty, and hence
min{P {X

n

= 1|⌧
n

} ,P {X
n

= 0|⌧
n

} > 0. The fact that both
probabilies are positive implies that there are signals s 2 S
that make X

n

= 1 and others that make X
n

= 0, and hence
X

n

and S
n

are not conditionally independent given ⌧
n

, or
equivalently X

n�1. Therefore the system is not in a cascade.

Proof of Lemma 2: The proof can be done directly using
an induction over n, and is left to the interested reader.

Proof of Theorem 2: Let us assume that G
n

has consis-
tent distortion and consider g 2 G

n

is such that ⌧
n

(g) > U
s

.
Then, considering the fact that

⇤

Gn(g) = log

P1 {Gn

= g}
P0 {Gn

= g}

= log

P

x

n�12An
↵
n

(g|xn�1
)P1

�

X

n�1
= x

n�1
 

P

x

n�12An
↵
n

(g|xn�1
)P0

�

X

n�1
= x

n�1
 ,

it can be shown using Lemma 0 that there exist at least one
x

n�1 such that ↵
n

(g|xn�1
) > 0 and ⌧ full

n

(x

n�1
) > U

s

.
Above, A

n

= {xn�1 2 {0, 1}n�1|↵(g|xn�1
) > 0}. Then,

due to the consistent distortion, all x 2 {0, 1}n�1 2 A
n

also
satisfy ⌧ full

n

(x

n�1
) > U

s

.
A similar derivation shows that, for any x

n�1 2 A
n

, all
g0 2 G

n

such that ↵
n

(g0|xn�1
) > 0 also satisfy ⌧

n

(g0) > U
s

.
Therefore, is clear that

P
w

{X
n

= 0|Xn�1
= x

n�1}
=

X

g

02Gn

↵
n

(g0|xn�1
)P

w

{X
n

= 0|G
n

= g0}

=

X

g

02Gn

↵
n

(g0|xn�1
)F⇤

w

(⌧
n

(g0))

= 1 , (41)

where the last equality is due to the fact that if ⌧
n

> U
s

then F⇤
w

(⌧
n

) = 1 and also that for a fixed x

n�1 the terms
↵
n

(g0|xn�1
) form a p.d.f. With this result, it can be shown

that

⇤

X

n
(X

n

) = log

P1

�

X
n

|Xn�1 

P0

�

X
n

|Xn�1 + ⇤

X

n�1
(X

n�1
)

= ⇤

X

n�1
(X

n�1
) (42)

almost surely, which in turns shows that ⌧ full
n+1(X

n

) > U
s

almost surely as well. Finally, the fact that all decision vectors
x

n that have positive probability guarantee ⌧
n

> U
s

, combined
with the consistent distortion condition and Lemma 2 guaran-
tee that ⌧

n

(G
n+1) > U

s

almost surely. This, combined with
Proposition 1, proves the desired result.

The proof for the the case ⌧
n

(g) < L
s

is analogous and is
not included.

APPENDIX C
ANALYSIS OF SYSTEMS WITH VARIOUS PRIVATE SIGNAL

STRUCTURE

A. Binomial distribution
Let us consider the case where the signals follow a Binomial

distribution with parameters q
w

and n, i.e.

p
w

(s) =

✓

n

s

◆

qs
w

(1� q
w

)

(n�s) . (43)

By assuming without lack of generality that q1 > q0, then the
signal log-likelihood is a linear function given by

⇤

S

(s) = s log
q1
q0

+ (n� s) log
1� q1
1� q0

. (44)

Note that ⇤
S

(s) is bounded with L
s

= ⇤

S

(0) = n log

1�q1

1�q0

and U
s

= n log

q1

q0
. Moreover, using XX and XX and XX one

can find that

P
w

�

X
n

= 0|Xn�1 
=

8

>

<

>

:

0 if ⌧
n

< L
S

,
P

k

⇤(⌧n)
k=0 p

w

(k) if ⌧
n

2 [L
S

, U
S

],
1 if ⌧

n

> U
S

.

where k⇤(⌧
n

) is the largest integer k such that ⇤
S

(k)  ⌧
n

.
By defining k⇤ = �1 when ⌧

n

< L
s

and taking the convention
P�1

k=0 f(k) = 0, then

⇤

Xn|Xn�1
(X

n

|Xn�1
) =X1 log

P

n

j=k

⇤+1 p1(j)
P

n

j=k

⇤+1 p0(j)
(45)

+ (1�X
n

) log

P

k

⇤

j=1 p1(j)
P

k

⇤

j=1 p0(j)
(46)

:=f(X1, k
⇤
) . (47)

Therefore, a partition of n + 1 regions is introduced in the
decision signal space by the signal log-likelihood function,
each of which indexed by a k⇤. Therefore, the step sizes can
be of n+ 1 different sizes, according to which region the ⌧

n

belongs to.

B. Poisson signals
Let us now consider a system where agents receive discrete

but infinite signals s 2 {0, 1, . . . } that follow a Poisson
distribution with parameter L

w

, i.e.

P
w

{S
n

= s} =

(L
w

)

s

n!
e�Lw (48)

Let us assume without lack of generality that L1 > L0. Then,
the signal log-likelihood is given by

⇤

S

(s) = s log
L1

L0
+ L0 � L1 , (49)
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where bsc is the greatest integer that is smaller that s.
Interestingly, as s � 0 then the private beliefs are bounded
from bellow by L

s

= L0 � L1 but not from above.
Therefore, one can find that

⇤

�1
S

(l) =

&

l + L1 � L0

log

L1
L0

'

(50)

Then, using XX and XX and XX one can find that

P
�

X
n

= 0|W = w,Xn�1 
=

(

0 if ⌧ social
n

< L
S

,
�(k⇤

,L1)
(k⇤)! otherwise,

where �(x, L) =

R

x

0 uL�1e�udu is the incomplete Gamma
function and

k⇤(⌧
n

) =

&

(⌧
n

+ L1 � L0)

✓

log

L1

L0

◆�1
'

(51)

Finally, then log-likelihood can be expressed as

⇤

Xn|Xn�1
(X

n

|Xn�1
) =X1 log

k⇤ � �(k⇤, L1)

k⇤ � �(k⇤, L0)

+ (1�X
n

) log

�(k⇤, L1)

�(k⇤, L0)
.

As in the case of Binomial distributions, we see that the
step sizes are determined according to k⇤ which introduces a
numerable partition in the semiplane given by [L0 � L1,1).

C. Guassian signals
Let us assume that, for given W = w, S

n

are continuous
real variables which are absolutely continuous with respect
to the Lebesgue measure, i.e. their statistics can be described
using a p.d.f. h

w

(s). Then, the log-likelihood ratio can be
expressed as

⇤

S

(s) = log

h1(s)

h0(s)
. (52)

As a particular case, we will study Gaussian channels where,
for given W = w, S

n

distributes as a Gaussian random
variable with mean value m

w

and variance � that does not
dependent on W = w. Without loose of generality, let us
assume that m1 = �m0 := m. Then, a direct computation
shows that for this case the log-likelihood is linear, as shown
by a direct computation:

⇤

S

(s) =
1

2�2

⇥

(s+m)

2 � (s�m)

2
⇤

(53)

=

2m

�2
s . (54)

This shows that Gaussian signals provide non-bounded beliefs,
as a large signal can provided a arbitrarly strong evidence in
favor of any of the two states of the world. Note that this also
shows that the log-likelihood is an increasing function, and its
inverse can be expressed as

⇤

�1
S

(x) =
�2

2m
x . (55)

Moreover, it is useful to recall that the c.d.f. of Gaussian
variables can be written in terms of the Q-function as H

w

(s) =

1 � Q(

s�mw
�

), where Q(s) = 1/(2⇡)
R1
s

e�u

2
/2du. Hence,

one can find that

H
w

(⇤

�1
S

(x)) = H
w

✓

�2

2m
x

◆

= 1�Q
⇣ �

2m
x+ (�1)wm

�

⌘

.

Using this and (23), one can find that

P
�

X
n

= 1|W = w,Xn�1 
= Q

⇣ �

2m
⌧ social
n

+ (�1)wm

�

⌘

.

Finally, noting that 1 � Q(x) = Q(�x), the conditional log-
likelihood functions can be written as

⇤

X1(X1) =X1 log

Q
⇣

�(⌫+⌘)
2m � m

�

⌘

Q
⇣

�(⌫+⌘)
2m +

m

�

⌘ (56)

+ (1�X1) log

Q
⇣

��(⌫+⌘)
2m +

m

�

⌘

Q
⇣

��(⌫+⌘)
2m � m

�

⌘ (57)

and

⇤

Xn+1|Xn
(X

n+1|Xn

) = X
n+1 log

Q
⇣

�⌧

social
n+1

2m � m

�

⌘

Q
⇣

�⌧

social
n+1

2m +

m

�

⌘

+ (1�X
n+1) log

Q
⇣

��⌧

social
n+1

2m +

m

�

⌘

Q
⇣

��⌧

social
n+1

2m � m

�

⌘ .

D. Cauchy signals

Let us consider now the case in which agents have access
to Cauchy signals, whose p.d.f. is given by

h
w

(s) =
1

⇡�



1 +

⇣

s�mw
�

⌘2
� (58)

where m
w

and � are the location and shape parameters. As
in the case of Gaussian signals, we will assume that m1 =

�m0 := m while � do not depend on W . With this, a direct
calculation gives that

⇤

S

(s) = log

�2
+ (s+m)

2

�2
+ (s�m)

2
. (59)

By inverting the equation ⇤

S

(s) = l, one finds the following
second order polinomial

s2 + 2

1 + el

1� el
ms+ �2

+m2
= 0 , (60)

whose solution is given by

s±(l) = �m1 + el

1� el
±
s

4m2el

(1� el)2
� �2 . (61)

Therefore, for each l 2 R � {0} there exists two signals
such that ⇤

s

(s±) = l, which are the ones given in (61) (see
Figure 15). With this and (62), one can find that

F⇤
w

(l) =

(

H
w

(s+(l))�H
w

(s�(l)) if l  0

H
w

(s�(l)) + 1�H
w

(s+(l)) if l > 0,
(62)
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where H
w

(s) = 1
⇡

arctan

⇣

s+(�1)wm

�

⌘

+

1
2 is the c.d.f. of a

Cauchy distribution. Using this and (23), one finds that

P
w

{X
n+1 = 1|Xn}

=

(

1�H
w

(s+(X
n

)) +H
w

(s�(X
n

)) if ⌧
n

(X

n

)  0

H
w

(s+(X
n

))�H
w

(s�(X
n

)) if ⌧
n

(X

n

) > 0,

=

8

>

<

>

:

1� 1
⇡

h

arctan

⇣

c+

�

⌘

� arctan

⇣

c�
�

⌘i

if ⌧
n

(X

n

)  0

1
⇡

h

arctan

⇣

c+

�

⌘

� arctan

⇣

c�
�

⌘i

if ⌧
n

(X

n

) > 0.

Above, the last equality introduces the shorthand notation
c+ = s+(X

n

) + (�1)wm and c� = s�(X
n

) + (�1)wm.

−20 −15 −10 −5 0 5 10 15 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Signal value

L
o

g
−

lik
e

lih
o

o
d

Fig. 15: In contranst to the Gaussian case, Cauchy signals provide
bounded beliefs. This implies that a very high signal in the Gaussian
case is a clear indicator that w = 1, while in the Cauchy case such a
high signal is not really informative. Moreover, the inverse is no 1-1
but 1-2. Red asterisks show s+ and s� as given in (61) for l = 1/2.

APPENDIX D
PROOFS OF SECTION VII

Proof of Proposition 4: Let us first notice that a direct
calculation using Bayes rule shows that

P {W = 1|G
n

= g} =

1

1 +

P0{Gn=g}P{W=0}
P1{Gn=g}P{W=1}

(63)

= �(⌫ � ⌧
n

(g)), (64)

where the last equality uses the definition of the logistic
function and the fact that ⌘ � ⇤

Gn = ⌫ � ⌧
n

. Therefore, one
can show that

P {W = w,G
n

= g} = �([2w � 1][⌫ � ⌧
n

])P {G
n

= g}
With this, one can re-write the average utility in a slightly
different decomposition:

¯U
n

(⇡b) =
X

w2{0,1}
g2Gn

�([2w � 1][⌫ � ⌧
n

(g)])P {G
n

= g}

⇥
⇣

u
w,0F

⇤
w

(⌧
n

(g

n

)) + u
w,1

⇥

1� F⇤
w

(⌧
n

(g

n

))

⇤

⌘

.

Let us denote as T
n

= {t 2 R|exists g 2
G
n

such that ⌧
n

(g) = t} the set of all values that ⌧
n

can adopt.
Then, one can re-write the above expression as

¯U
n

(⇡b) =
X

w2{0,1}
t2Tn

�([2w � 1][⌫ � t])

0

B

B

@

X

g2Gn
⌧n(g)=t

P {G
n

= g}

1

C

C

A

⇥
⇣

u
w,0F

⇤
w

(t) + u
w,1

⇥

1� F⇤
w

(t)
⇤

⌘

.

Finally, the Proposition is proven by expanding the sum over
W and using (27).

Proof of Theorem 3: Due to the theorem’s assumptions
and Theorem 2, one can find that, for large values of n, T

n

ends up being composed by numbers that are either larger than
U
s

or smaller than L
s

. Now, by recalling that if t > U
s

then
F⇤
w

(t) = 1 while if t < L
s

then F⇤
w

(t) = 0, then is clear that
(28) can be re-written as

¯U1(⇡b) = lim

n!1

X

t2Tn
t>Us

h

u1,0 � (u1,0 � u0,0)�(t� ⌫)
i

P {⌧
n

= t}

+ lim

n!1

X

t2Tn
t<Ls

h

u0,1 � (u0,1 � u1,1)�(⌫ � t)
i

P {⌧
n

= t} .

If t � U
s

then due to u1,0 � u0,0 (c.f. Section IV-C) and the
monotonicity of �(·) is clear that

(u1,0 � u0,0)�(t� ⌫) � (u1,0 � u0,0)�(Us

� ⌫) . (65)

Equivalently, for the case of t  L
s

one finds that (u0,1 �
u1,1)�(⌫ � t) � u0,1�(Ls

) + u1,1�(⌫ � L
s

). Using these
inequalities the theorem can be proven, taking into account
that

P {C0} = lim

n!1

X

t2Tn
t>Us

P {⌧
n

= t} = lim

n!1
P {⌧

n

� U
s

} , (66)

P {C1} = lim

n!1

X

t2Tn
t<Ls

P {⌧
n

= t} = lim

n!1
P {⌧

n

 L
s

} . (67)

APPENDIX E
COMPUTING P

w

{G
n

= g

n

}
For finding an expression for P

w

{G
n

= g

n

}, first note that
one can use the distortion coefficients (c.f. Section V-D) to
obtain

P
w

{G
n

= g

n

} =

X

x

n�1

↵
n

(g

n

|xn�1
)P

w

�

X

n�1
= x

n�1
 

.

Then, for computing P
w

�

X

n�1
= x

n�1
 

, note that first
that X

n

= ⇡
b

(S
n

,G
n

), and hence the fact that S
n

and
X

n�1 are conditionally independent given W = w makes
X

n�1 � G
n

� X
n

a Markov chain for a given W = w.
Therefore one can show that P

w

{X
n

= 0|G
n

= g,Xn�1} =

P
w

{X
n

= 0|G
n

= g} and therefore it can be found using
(V-B) that

P
w
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X
n

= 0|Xn�1
= x
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X
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Finally, using this result the distribution of a decision vector
can be found using the fact that

P
w

{Xn

= x

n} =

n

Y

j=1

P
w

�

X
j

= x
j

|Xj�1
= x

j�1
 

,

(68)

with the convention that P
w

�

X1 = x1|X0 
=

P
w

{X1 = x1}.
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